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Using These Notes

Welcome to the eleventh set of course lecture notes I’ve written. This is a set of lecture
notes for Math 251H, Honors Ordinary and Partial Differential Equations. The first question
you should be asking is, “Why would you write lecture notes for an introductory course when
there are dozens if not hundreds of books on this subject?” To be honest, I hadn’t planned
on writing these notes and I wouldn’t have if I’d been teaching the coordinated non-honors
course. There just isn’t enough freedom to adjust the material, which largely follows Boyce
and DiPrima’s book [BDM21]. The honors section is an entirely different course whose
delivery is largely up to the instructor as long as he/she/they cover the material that would
be covered in the non-honors sections. So, I wrote these notes.

The lecture notes are loosely based on a number of books, all of which are fine but
none of which do I love. Obviously, since Penn State uses Boyce and DiPrima [BDM21]
for almost all sections of Math 251, the structure of the notes is somewhat based on the
order of that book. Former instructors of the honors section used Nagle, Saff and Snider
[NSS11] which is a good book, but didn’t have everything I wanted. It did have a good
treatment of the Energy Theorem, which I made sure to include. I also used Borelli and
Coleman’s [BC98] book, which is out of print. I really liked this book and a lot of the spirit
of the notes is drawn from there. In addition to these more general references, I also took
inspiration from Adkins and Davidson [AD12], which I think is more geared toward a junior
or senior level treatment. Examples are also taken from Arnold [Arn92] (which is definitely
not geared toward undergraduates) and, of course, Strogatz [Str18]. The partial differential
equations material is taken from my notes on the subject, which are largely derived from
[Asm16, Hab03, Olv14, Log14], but we only touch on the rudimentary aspects of the
subject.

I used to advise people to get one of the books I reference and you probably should, but
it’s not required. These notes most likely have typos left (but nothing egregious). There is
a rather amusing story of a typo we found in class that resulted from a Mathematica gaff on
my part – but that’s been fixed. That said, the notes do have some idiosyncrasies that are
unique to me. I spend very little time on transient behavior in damped oscillators – mainly
because I don’t find it terribly interesting. However, following [BC98] we do talk about beat
frequency. The Laplace transform is used mainly to get at Green’s functions, on which we
briefly touch and I unabashedly use the fact that that Laplace transform variable (usually
s) is imaginary. In systems, I eschew the usual discussion and go straight to the solution
as a matrix exponent. The information on matrix diagonalization is taken from my Linear
Algebra notes. We discuss but don’t prove the Jordan decomposition to explain why teλt
shows up in solutions with degenerate eigenspaces because I cannot abide the “let’s guess a
solution...” approach used in [BDM21]. Most classes never get to the explanation of why
that guess was right, so it leaves one feeling rather empty – like Math is some sort of series of
lucky guesses and tricks, which I hate. Finally I tried writing these in “lesson” and “module”

xi



xii USING THESE NOTES

format rather than as chapters. I ended up not liking it much, since I taught 59 lectures but
there are 44 ‘lessons’, which means some lessons took more than one lecture. Perhaps one
day I’ll reformat the notes into standard chapters. Given all those caveats, I hope you enjoy
using these notes.



Module 1

Introduction to Differential Equations





LESSON 1

1. Some Preliminaries

Remark 1.1. These lectures assume familiarity with all the material in the first two semesters
of calculus. This includes explicit and implicit differentiation methods and methods of in-
tegration. However, since vector calculus is not a prerequisite, we will very quickly review
functions of several variables, partial derivatives and implicit functions.

Remark 1.2. The expression D ⊆ Rn means that D is a set contained in or equal to Rn, the
n-dimensional Euclidean space. Here the set R is the set of all real numbers, not including
±∞. We don’t need to know what a dimension really is for now; it suffices to think of it as
the number of axes when you “draw a picture.”

Definition 1.3 (Function of Several Variables). A function u : D ⊆ Rn → R is a function
of n variables and is usually written u(x1, x2, . . . , xn) with domain D. When n = 2, we may
write u(x, y) (for simplicity) and when n = 3 we may write u(x, y, z).

Example 1.4. The following are some functions of several variables:

u(x, y) = x2 + y2(1.1)

v(x, y, z, t) = x2 + y2 + z2 − c2t2.(1.2)

The first function is simply a generalization of a parabola. Plotting z = u(x, y) yields a
two-dimensional surface embedded in R3 called a paraboloid, see Fig. 1.1(left). The second

Figure 1.1. A paraboloid in R3 defined by the equation z = u(x, y).

function is used to define Minkowski spacetime in special relativity.

3
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Definition 1.5 (Partial Derivative). Let u : D ⊆ Rn → R be a function of several variables.
The partial derivative with respect to xi (if it exists) is:

(1.3)
∂u

∂xi
= lim

h→0

u(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− u(x1, . . . , xn)

h
.

Remark 1.6. Definition 1.5 really just says that if u(x1, . . . , xn) is function of many vari-
ables, then a partial derivative with respect to xi treats all other variables as constants.

Example 1.7. Consider the function u(x, y) = x log(y). Then:

∂u

∂x
= log(y)(1.4)

∂u

∂y
=
x

y
.(1.5)

Definition 1.8 (Implicit Function). Suppose f : D ⊆ Rn → R is a function of several
variables, then if we have f(x1, . . . , xn) = 0, then we have xn defined as an implicit function
of x1, . . . , xn−1.

Remark 1.9. The expression x ∈ X means x is in the set X.

Example 1.10. Let a, b ∈ R. The function:

(1.6) f(x, y) =
x2

a2
+
y2

b2
− 1

can be used to define ellipses with:

(1.7) f(x, y) = 0 ⇐⇒ x2

a2
+
y2

b2
= 1,

That is, you will recall from Algebra 2 that the curve:

Γ = {(x, y) ∈ R2 : f(x, y) = 0}

defines an ellipse with center at (0, 0).

Remark 1.11. In Definition 1.8 we could easily replace xn with any of the xi’s. We used
xn for convenience. We also note that the existence of an explicit function (e.g.) y = g(x)
given f(x, y) = C is not guaranteed except under certain conditions given by the implicit
function theorem. For completeness, we state the implicit function theorem for R2.

Theorem 1.12 (Implicit Function Theorem (2D)). Let u : R2 → R be a function.
Consider the set:

(1.8) Γ = {(x, y) ∈ R2 : u(x, y) = 0}

Suppose (x0, y0) ∈ Γ. If

∂u

∂y

∣∣∣∣
x=x0,y=y0

̸= 0,

then there is a region N ⊂ R with (x0, y0) ∈ N and a continuous and differentiable function
f : R → R so that for (x, y) ∈ N we have y = f(x).
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Example 1.13. You are already familiar with this to some extent. Assuming y > 0 and
x ∈ [−a, a] we know that the ellipse can be modeled by the equation:

y =

√
b2
(
1− x2

a2

)
.

Thus our neighborhood N is about x0 = 0, y0 = b and is the rectangle [−a, a]× [0, b].

2. Ordinary Differential Equations

Definition 1.14. An ordinary differential equation (ODE) is an equation involving an un-
known function of one variable y(x) and any number of its derivatives. We generally assume
that x is restricted to a known interval I.

Remark 1.15 (Notation). Let y(x) be a function of the independent variable x. Then we
can write the first derivative of y as:

(1.9)
dy

dx
= y′(x).

The nth derivative can be written:

(1.10)
dny

dxn
= y(n)(x),

with second derivatives usually written y′′(x) and third derivatives written y′′′(x). The
exception to this notation is when the independent variable is time (or time like) in which
case we may have a function x(t). Then the first derivative can (but doesn’t have to be)
written as:

dx

dt
= ẋ(1.11)

d2x

dt2
= ẍ(1.12)

...(1.13)

dnx

dtn
= x(n)(t).(1.14)

The “dot notation” is a hold-over from Newton’s Fluxion Notation, while the rest of the
notation is due to Leibniz.

Remark 1.16 (Notation Remark). In these notes, notation is intentionally mixed so that
you become used to all the varieties you might encounter in future classes. That is, we inten-
tionally switch dependent variable names, independent variable names, derivative markings
etc. However, notation will be consistent within any single remark, derivation, theorem etc.

Remark 1.17. In general, we can write an ordinary differential equation as:

(1.15) F (y, y′, . . . , y(n), x) = 0,

where F represents a function acting on the unknown function y(x), its derivatives and its
independent variable x ∈ I.

Definition 1.18 (Order). Consider an ordinary differential equation F (y, y′, . . . , y(n), x) =
g(x). The order of the ODE is n, the degree of the highest derivative appearing in the
equation.
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Example 1.19 (Galilean Gravity). The following is a simple second order ODE:

(1.16) ÿ + g = 0,

where g ∈ R is a constant and g > 0. Notice in this equation we have suppressed the
independent variable x. This is standard unless the independent variable appears explicitly
in a function. This is a model of Galilean gravity; that is, gravity near the surface of the
earth without air resistance. Here, g ≈ 9.8m/s is the gravitational constant.

Example 1.20 (Exponential Growth/Decay). The following is a simple first order ODE:

(1.17) y′ − αy = 0,

where α ∈ R is a constant. This differential equation models exponential growth (or decay).
We will study it in much greater detail shortly.

Example 1.21 (Beam Equation). The following fourth order ODE is called the beam equa-
tion:

(1.18)
d4w

dx4
= q(x),

where q(x) is a function that is specific to the beam being described. The beam equation
describes the deflection of a solid but flexible beam as a result of force. It is used in structural
engineering [Asm16].

Definition 1.22 (Explicit Solution). Suppose that F (y, y′, . . . , y(n), x) = 0 with x ∈ I is an
ODE. An explicit solution is a function y = φ(x) that satisfies the equation for all x ∈ I.
That is, when φ(x) is substituted for y, then the equation defining the ODE is true for all
x ∈ I.

Example 1.23. Consider the model of Galilean gravity. The function y(t) = C0+C1t− 1
2
gt2

is an explicit solution where C0, C1 ∈ R. To see this, simply compute:

(1.19) ÿ = −g.

Thus we see that ÿ + g = −g + g = 0. This method of verification can be applied anytime
you are given an explicit solution.

Definition 1.24 (Implicit Solution). Suppose that G(x, y) = 0 is an implicit definition of y
in terms of x. Then G(x, y) is an implicit solution of the ODE F (y, y′, . . . , y(n), x) = 0 with
x ∈ I if it defines one or more explicit solutions of the ODE.

Example 1.25. Consider the ODE:

(1.20) yy′ + x = 0,

with x, y ∈ (0,+∞). We claim that G(x, y) = x2 + y2 − C2 = 0 is a solution to the ODE
for any C ∈ R. To see this, note if x2 + y(x)2 − C2 = 0, then using implicit differentiation
yields:

x+ yy′ = 0,

which is the ODE in question. Notice we assumed that G(x, y) defined a function y = g(x).
We need the implicit function theorem to make this rigorous – which we will not do because
G(x, y) is just a special case of the ellipse, which we already discussed.
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3. Systems of Ordinary Differential Equations

Definition 1.26. A system of ordinary differential equations is a set of equations involving
involving a set of unknown functions y1,. . . ,yn and their derivatives each a function of one
independent variable.

Remark 1.27. We will make a thorough study of systems of differential equations. For
now, we provide two examples to illustrate what we mean.

Example 1.28 (Linear Cascade Equation). Let α, β, γ ∈ R. The following system of equa-
tions is sometimes called a cascade equation:

y′1 = αy1

y′2 = βy1 + γy2

This is because the unknown functions cascade down the right-hand-side. These systems
can be used to model certain kinds of radioactive decay, which we will discuss in detail later.

Example 1.29 (Lotka-Volterra Equations). Let x(t) be the quantity of a prey species (e.g.,
rabbits) in an environment and let y(t) be the quantity of a predator species (e.g., wolves) in
an environment. The Lotka-Volterra equations describe a semi-idealized model of predator-
prey interaction. Let α, β, γ, δ ≥ 0 the equations are:

ẋ = αx− βxy

ẏ = γxy − δy.

These equations have interesting properties, which we will come to after we have dispatched
with ordinary differential equations.





LESSON 2

1. Initial Value Problems

Definition 2.1 (Initial Value Problem). An initial value problem (IVP) is a differential
equation F (y, y′, . . . , y(n), x) = 0 along with conditions:

y(x0) = y0

y′(x0) = y1
...

y(n−1)(x0) = yn−1

Example 2.2 (Galilean Gravity). Consider the IVP:

ÿ = −g.
y(0) = y0 y′(0) = v0

We had the solution y(t) = C0 + C1t− 1
2
gt2. Setting t = 0 we have:

y(0) = C0 + C1(0)−
1

2
g(0)2 = y0 =⇒ C0 = y0

and

y′(0) = C1 − g(0) = v0 =⇒ C1 = v0.

Thus the solution to the IVP is y(t) = y0 + v0t− 1
2
gt2.

Example 2.3 (Exponential Growth/Decay). Let’s solve a more complicated IVP.

y′ − αy = 0

y(0) = y0 > 0

We can write the ODE as:

dy

dx
= αy

Multiplying by dx, diving by y and integrating yields:ˆ
dy

y
=

ˆ
αdx.

A little computation shows:

log(y) = αx+ C,

9
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were C is a constant of integration. You can put it on either side, but by convention it
usually goes on the side with the independent variable. Since y(0) = y0 it’s easy to see that
when x = 0 we have:

log(y0) = C

Thus log(y)− αx− log(y0) = 0 implicitly solves the ODE. We can do better. Notice:

log(y)− log(y0) = log

(
y

y0

)
= αx.

Taking the exponential yields:
y

y0
= eαx

or:

y(x) = y0e
αx.

Remark 2.4. Notice if y0 > 0 (as we assumed) then y0e
αx > 0 for all x. If y0 < 0 we need

to use the (more correct) formula:ˆ
dx

x
= log |x|.

The result is the same. If y0 ∈ R, we will always have the solution y(x) = y0e
αx for the

equation y′ = αy with y(0) = y0.

Example 2.5 (Radioactive Decay). Some elements (especially those with high atomic num-
ber) decay into lighter elements. You’re familiar from popular culture with the radioactive
properties of Cesium, Plutonium and some isotopes of Uranium. Let P (t) be the mass of a
sample of the element at any given time. Radioactive decay is modeled by the equation:

Ṗ = −kP,
where k > 0 is the decay constant. In particular, the radioactive decay law states that the
rate of decrease of the elements mass at time t is proportional to its mass at time t. (More
mass implies a faster instantaneous rate of decay.) We already know the resulting solution
is:

P (t) = P0e
−kt.

A time of interest to chemists, environmental engineers and physicists is the half-life. This
is the time when half of an initial sample P0 will have decayed away. We can compute this
as:

P0

2
= P0e

−kτ ,

where τ is the half-life. Solving for τ we see:

log

(
1

2

)
= − log(2) = −kτ

or:

(2.1) τ =
log(2)

k
.

Notice the half-life is independent of initial sample size (as expected). Also, given a half-life
we can compute a decay rate by solving for k in terms of τ .
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Remark 2.6. You may remember that the equation y(t) = y0e
αt (here t is time) models

exponential growth when α > 0 and exponential decay when α < 0. Exponential growth is
used to model some cellular growth and the very early stages of pandemics (sigh). We have
already discussed exponential decay.

2. Linear Ordinary Differential Equations

Definition 2.7 (Linear ODE). An ordinary differential equation is linear if

F (y, y′, . . . , y(n), x) = 0

is linear in the unknown function and its derivatives.

Remark 2.8. In particular, if F (y, y′, . . . , y(n), x) = 0, that means y cannot be multiplied by
any of its derivatives or itself or appear in complicated functions. The independent variable
can appear in complicated functions that may be multiplied by y or its derivatives.

Example 2.9. The following equation is linear :

(2.2) sin(x)y′′(x) + tan(x)y′(x) + exy(x) = x2.

This is because y and its derivatives only appear on their own, not interacting with each
other except through addition. On the other hand, the equation:

(2.3) y′′ = αy2

is nonlinear, with α ∈ R.

Remark 2.10. On the whole, linear equations are easier to solve than non-linear equations
and have nicer properties. If F (y, y′, . . . , y(n), x) = 0 is a linear ODE, then we can easily
re-write it as:

(2.4) y(n) = pn−1(x)y
(n−1)(x) + pn−2(x)y

(n−2)(x) + · · ·+ p1(x)y
′(x) + p0(x)y(x) + q(x),

where pk(x) (k = 0, . . . , n − 1) and q(x) are functions of x (and only x). We have already
seen several examples of linear ODE’s in this form in Examples 1.19 to 1.21.

Definition 2.11 (Homogeneous). A linear ODE with form given by Eq. (2.4) is called
homogeneous if q(x) = 0.

Lemma 2.12 (Linearity of the Derivative). Let f(x) and g(x) be two functions of a the
independent variable x. If c ∈ R and n is a non-negative integer, then:

dn

dxn
[cf(x) + g(x)] = c

dnf

dxn
+
dng

dxn
= cf (n)(x) + g(n)(x).

□

Remark 2.13. Lemma 2.12 says that the derivative is a linear operation (linear operator).
We will discuss this in depth in the next section.

Theorem 2.14 (Superposition). Suppose y1(x) and y2(x) are two solutions to a linear
homogeneous ODE with form:

y(n) = pn−1(x)y
(n−1)(x) + pn−2(x)y

(n−2)(x) + · · ·+ p1(x)y
′(x) + p0(x)y(x).

Then αy1(x) + y2(x) is also a solution.
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Proof. Apply Lemma 2.12:

dn

dxn
[αy1(x) + y2(x)] = αy

(n)
1 (x) + y

(n)
2 (x) =

α
[
pn−1(x)y

(n−1)
1 (x) + pn−2(x)y

(n−2)
1 (x) + · · ·+ p1(x)y

′
1(x) + p0(x)y1(x)

]
+[

pn−1(x)y
(n−1)
2 (x) + pn−2(x)y

(n−2)
2 (x) + · · ·+ p1(x)y

′
2(x) + p0(x)y2(x)

]
.

Factoring terms we have:

dn

dxn
[αy1(x) + y2(x)] = pn−1(x)

[
αy

(n−1)
1 (x) + y

(n−1)
2 (x)

]
+

pn−2(x)
[
αy

(n−2)
2 (x) + y

(n−2)
2 (x)

]
+ · · ·+ p1(x) [αy

′
1(x) + y′2(x)] +

p0(x) [αy1(x) + y2(x)]

Thus αy1(x) + y2(x) satisfies the ODE equation. □

Example 2.15. Assume α > 0 and consider the linear ODE:

y′′ = −α2y

We can show that both y1(x) = sin(αx) and y2(x) = cos(αx) are solutions. Note:

d2y1
dx2

= −α sin(αx) = −α2y1(x)

d2y2
dx2

= −α cos(αx) = −α2y2(x).

Thus we can conclude a solution to the original ODEmight have form C1 cos(αx)+C2 sin(αx),
where C1 and C2 are constants of integration.

Remark 2.16. We will see this pattern repeat for all second order linear homogeneous
ODE’s. There will be two solutions that can be combined via superposition with two con-
stants of integration integration.

3. Introduction to Existence and Uniqueness

Remark 2.17. We just saw an example of a second order linear equation where seemingly
two separate solutions were combined into a single solution. How do we know a solution
exists at all though? This question is easiest to answer for first order equations.

Theorem 2.18 (Picard’s Theorem). Consider the first order initial value problem:

dy

dx
= f(x, y) y(x0) = y0.

If both f and ∂f
∂y

are continuous in a rectangle R = [a, b]× [c, d] containing (x0, y0) then there

exists a δ > 0 such that the IVP has a unique solution φ(x) in some interval (x0− δ, x0+ δ).
□

Remark 2.19. Interestingly, existence of a solution is guaranteed by the continuity of f
alone, but not necessarily uniqueness.
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Example 2.20. Consider the ODE:

y′ =
1

2xy
.

Notice the function on the right-hand-side is not continuous at x = 0 or y = 0. That is, this
function has infinitely large regions of discontinuity. Nevertheless, we can solve this ODE.

Figure 2.1. A function that is discontinuous along the lines x = 0 and y = 0.

Rearranging terms and integrating yields:ˆ
2y dy =

ˆ
dx

x
.

Therefore:

y2 = log(x) + C.

We know from the theorem that existence and uniqueness are only possible in a rectangle
that does not contain the line x = 0 or the line y = 0. This is clear: If we start with an
initial condition y(0) = y0 with y0 ̸= 0, then this implies

y20 = log(0) + C,

but log(0) is undefined, so we can have no such solution. On the other hand, suppose we
start with a solution y(x0) = 0 with x0 > 0. Then we have:

02 = log(x0) + C =⇒ C = − log(x0).

But y2 = log(x) + C this implies we have two solutions:

y = ±
√

log(x)− log(x0),

which may exist in different intervals depending on value of x0.





LESSON 3

1. Partial Differential Equations

Definition 3.1. A partial differential equation (PDE) is an equation involving an unknown
function of several variables u(x1, . . . , xn) with n > 1 and any number of its partial deriva-
tives.

Remark 3.2 (Notation). Notation for partial derivatives varies by text convenience. For
simplicity, let u(x, t) be a function of two variables. In this case, x is usually a spatial variable
and t is usually a temporal (time) variable. By way of notation for derivatives we have the
following equivalent expressions:

∂u

∂t
= ut = ∂tu

∂2u

∂x2
= uxx = ∂xxu

Notation varies by author and whatever happens to be convenient. There are still other
notations that can be used.

Definition 3.3 (PDE Order). The order of a PDE is the order of the highest partial deriv-
ative appearing in the equation.

Example 3.4 (Simple Transport Equation). Let u(x, t) be a function of space x and time
t and let c ∈ R, then the equation:

(3.1)
∂u

∂t
+ c

∂u

∂x
= 0

is a partial differential equation, which we’ll refer to as the simple transport equation because
there are ways to make it more complex and thus more general.

Proposition 3.5. Let f : R → R with f ∈ C1. Then u(x, t) = f(x− ct) is a solution to the
simple transport equation.

Proof. We can differentiate and check:
∂u

∂t
=

d

dt
f(x− ct) = −cf ′(x− ct).

On the other hand:
∂u

∂x
=

d

dx
f(x− ct) = f ′(x− ct).

Therefore:
∂u

∂t
+ c

∂u

∂x
= −cf ′(x− ct) + cf ′(x− ct) = 0

□

15
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Remark 3.6. Before commenting on the previous proposition, recall that the solution to
the ordinary differential equation (ODE):

(3.2)
du

dt
= λu

is:

u(t) = Aeλt,

where A is a constant of integration to be determined by an initial condition on the ODE.
By contrast, when we solved the simple transport equation, we don’t just have an un-

specified constant we have an unspecified function, namely f(z).

Example 3.7 (Physical Interpretation of the Simple Transport Equation). Let us be very
concrete for a moment. Suppose we have the initial condition:

u(x, 0) = e
−x2

2 .

Furthermore, suppose c = 1. The solution is:

(3.3) u(x, t) = e
−(x−t)2

2 .

This is illustrated in Fig. 3.1. We see at once that the transport equation describes a function
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Figure 3.1. Solutions to the transport equation are functions traveling right.

f(x) (denoting some physical system) moving to the right with speed c. In the example, the
top of the curve is always at x = t, thus the curve is moving at speed c = 1 (as expected).

Example 3.8 (Heat (Diffusion) Equation). Let k > 0. The one-dimensional heat (or diffu-
sion) equation is the second order partial differential equation:

(3.4)
∂u

∂t
= k

∂2u

∂x2
.

Proposition 3.9. Assume t ∈ (0,∞) and x ∈ (−∞,∞), then the function:

(3.5) Φ(x, t) =
e−

x2

4kt

2
√
kπt

=
1

2
√
kπt

exp

(
− x2

4kt

)
=

e−
x2

4kt
√
4πkt

solves the heat equation in 1 dimension.

Example 3.10 (Schrödinger Equation). Related to, but distinct from, the heat equation is
the one dimensional Schrödinger Equation of quantum mechanics:

(3.6) iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ V (x, t)Ψ(x, t).

This is (essentially) a diffusion equation with an imaginary diffusion constant (recall i =√
−1). This small change makes a big difference in the nature of the solutions. Also, unlike
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the heat equation, which can be derived from first principles, the Schrödinger’s Equation
does not seem to have a natural derivation; it simply popped out of Schrödinger’s mind.

Example 3.11 (Wave Equation). Let c ∈ R. The one-dimensional wave equation is the
second order partial differential equation:

(3.7)
∂2u

∂t2
= c2

∂2u

∂x2

Proposition 3.12. Let F (z) and G(z) be twice differentiable functions with continuous
derivatives. Then:

(3.8) u(x, t) = F (x− ct) +G(x+ ct)

is a solution to the wave equation.

Proof. The proof is by differentiation:

∂2u

∂t2
= c2F ′′(x− ct) + c2G′′(x+ ct)

and

∂2u

∂x2
= F ′′(x− ct) +G′′(x+ ct)

The result follows immediately. □

Remark 3.13. Note from the previous proposition we can deduce that one general solution
to the wave equation is a pair of traveling waves going in opposite directions.

Definition 3.14 (Linear Partial Differential Equation). A PDE is linear if it is a linear
function of the unknown function u and all of its derivatives. Otherwise, it is called non-
linear.

Remark 3.15. So far all the PDE’s you’ve seen are linear. We will return to the one
dimensional heat and wave equations at the end of the course. At that point, we’ll impose
some additional conditions that solutions must satisfy so that we do not have to deal with
quite so general functions.

2. Linear Operators & Eigenfunctions

Definition 3.16 (Linear Operator). An operator is a mapping from a function space U to
a function space V . Given two elements u, v ∈ U (resp. V ), assume that u + v ∈ U (resp.
V ) and for some α ∈ R (or α ∈ C) then αu ∈ U (resp. V ). An operator L : U → V is linear
if:

(3.9) L(αu+ v) = αL(u) + L(v)

Remark 3.17. Put simply, an operator is a machine that turns one function into another
function.
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Example 3.18. You already know two linear operators that are critical in the study of
calculus. The derivative and the integral are both linear operators. To see this, recall the
following rules from calculus. Assume f, g : R → R are C1 functions, then:

d

dx
(f + αg) =

df

dx
+ α

dg

dx
.

Likewise, if f, g : R → R are C0 functions, then:ˆ
αf(x) + g(x) dx = α

ˆ
f(x) dx+

ˆ
g(x) dx

Example 3.19. Let’s write a general linear ODE in operator notation. Let:

L =

(
d2

dx2
+ p(x)

d

dx
+ q(x)

)
Then the ODE:

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x)

can be written as:

L(y) = f(x),

because we have:

L(y) =

(
d2

dx2
+ p(x)

d

dx
+ q(x)

)
y(x) =

d2y

dx2
+ p(x)

dy

dx
+ q(x)y(x)

Remark 3.20. We have already proved (essentially) the next proposition.

Proposition 3.21 (Superposition Redux). Let L be a linear operator and suppose v and w
both solve L(u) = 0. Then for any constants α and β we have:

L(αv + βw) = 0,

that is αv + βw also satisfies the equation L(u) = 0. □

Example 3.22. We can also generalize the idea of an operator to re-write linear PDE’s in
simpler form. Consider the simple transport equation and define:

L =
∂

∂t
+ c

∂

∂x
.

Then for some C1 function u, we have:

L(u) =

(
∂

∂t
+ c

∂

∂x

)
u =

∂u

∂t
+ c

∂u

∂x
.

Thus, the simple transport equation can be written as:

Lu = 0.

Example 3.23 (D’Almbertian). The D’Almbertian operator defines the wave equation. In
one dimension we have:

□ =
∂

∂t2
− c2

∂

∂x2
.

In higher dimensions it is:

□ =
∂

∂t2
− c2∆.
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The wave equation is then:

□u = 0.

It is worth noting that in one dimension, you can factor the D’Almbertian as:

□ =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
.

This helps to explain D’Almbert’s solution to the wave equation as a pair of traveling waves,
one going leftward and another going rightward.

Remark 3.24. It is worth convincing yourselves that if L is a linear operator and u and v
are functions that both solve the homogeneous problem L(u) = 0 and L(v) = 0, then u+ v
also solves the homogeneous problem L(u + v) = 0. Thus, the principle of superposition
holds for all linear homogeneous ODE’s and PDE’s

Definition 3.25 (Eigenvalues & Eigenfunctions). Let L be a linear operator defined on
some appropriate function spaces. A function u is an eigenfunction with eigenvalue λ ∈ R
(or λ ∈ C) if:
(3.10) L(u) = λu

Remark 3.26. For those of you who have taken matrices, this is in perfect analogy to eigen-
values and eigenvectors of square matrices. Just like eigenvectors, where scale doesn’t matter,
we will see in the next example that constant scaling also doesn’t matter for eigenfunctions.

Example 3.27. Let us return again to the exponential growth and decay ODE. Let:

L =
d

dx
be the differential operator. Then we have:

(3.11) y′ = λy ⇐⇒ L(y) = λy.

We know that the solution to this ODE is:

y(x) = Aeλx.

Thus y(x) = eλx is an eigenfunction of L with eigenvalue λ. Notice, we can ignore the
constant A in front, since if y(x) is an eigenfunction of L, then so is Ay(x) by linearity. Thus
we have shown that the set of all possible real eigenvalues for L is R. The set of all possible
eigenvalues is called the spectrum of the operator. Notice, we’re ignoring complex numbers
here to make our life much easier.

Remark 3.28. While it may seem strange, eigenvalue problems pervade most of advanced
ODE’s and especially PDE’s. While writing ODE’s or PDE’s in this strange form won’t help
you solve them, it does help in writing proofs and generalizing results. Its also helpful for
understanding topics like quantum mechanics, which are almost entirely based on operator
theory.
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1. Direction Fields

Remark 4.1. Having gotten overly abstract, let’s crash back to earth by drawing some
pictures of ODE’s. We will focus on first order ODE’s for a while.

Definition 4.2 (Direction Field). Suppose that y′(x) = f(x, y) is a first order ODE. The
direction field is a plot consisting of a line segment at each point (x, y) with small length
and slope equal to f(x, y).

Derivation 4.3. Consider the simple ODE y′(x) = f(x, y). To draw a direction field:

(1) Choose a point (x0, y0)
(2) Pick a small value ∆x.
(3) We don’t know what ∆y is, but we can compute it as:

∆y = f(x, y)∆x.

(4) Start at point (x0−∆x/2, y0−∆y/2) and draw a line to point (x0+∆x/2, y0+∆y/2).
This ensures the slope of the line is f(x, y).

(5) Goto 1.

You can repeat the process for as many lines as you like.

Example 4.4. Consider the simple ODE y′(x) = 2x. We know this has solution y(x) =
x2 + C (by integration). We can draw the direction field and some example solution curves
(for various values of C) by following the recipe above.

Figure 4.1. (Left) A direction field with example solution curves for the
ODE y′(x) = 2x. (Right) Mathematica’s stream plot of the same function.

23
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Remark 4.5. Most modern graphing calculators can plot slope or direction fields for dif-
ferential equations. In Mathematica, a direction field for the ODE y′ = f(x, y) can be
constructed using the command StreamPlot[f(x,y),{x,x min,x max},{y,y min,y max}].
Example 4.6. Consider the ODE y′(x) = 2xy. The direction field is shown below. From

Figure 4.2. (Left) A direction field with example solution curves for the
ODE y′(x) = 2xy. (Right) Mathematica’s stream plot of the same function.

this figure (and the added curves) we can see that the solutions seem to come in three flavors,
a constant (the line in the middle), and two types of curves that mirror each other that go
off to ±∞ depending on what your initial y(x0) = y0.

This ODE is linear and can be solved in much the same way we solved the exponential
growth/decay problem. We have:

dy

dx
= 2xy

Isolating the variables on either side and integrating yields:ˆ
dy

y
=

ˆ
2x, dx.

This leads to the implicit solution:

log(y) = x2 + C.

Solving for y we have the general solution:

y(x) = A exp(x2),

where A = exp(C) is just the constant of integration in disguise. Notice that when A = 0
we get the constant solution y = 0. When A < 0 we get the solution curves below the line
y = 0 and when A > 0 we get the solution curves above the line y = 0.

Example 4.7 (Discontinuous Right Hand Side). Consider the ODE:

y′ = 2y/x

The direction field is shown below. Notice when x = 0, the direction field is not shown. The
field would be a collection of vertical lines. As before we can solve this ODE by isolating the
two variables on opposite sides of the equals sign and integrating. We have:
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Figure 4.3. (Left)The direction field of the ODE y′ = 2y/x. The right-
hand-side is discontinuous at x = 0 leading to intersecting solutions. (Right)
Mathematica’s stream plot of the same function.

ˆ
dy

y
= 2

ˆ
dx

x
.

This implies that:

log(y) = 2 log(x) + C = log
(
x2
)
+ C.

Solving for y we have:

y = Ax2,

where A = eC is the constant of integration in a disguise. We can see the non-uniqueness
of solutions if we have y(0) = 0. For any value of A, we will satisfy this initial condition, so
there are an infinite number of solutions in this case.

Definition 4.8 (Newton’s Second Law of Motion). If an object of mass m is acted upon by
a (vectorial) force F, then the resulting (vectorial) acceleration a is given by:

a =
F

m
,

or more familiarly: F = ma. This is Newton’s Second Law of Motion.

Example 4.9 (Terminal Velocity). Galilean gravity assumes no air resistance. In the pres-
ence of air resistance, we must model all forces on the falling body. Acceleration in this
context is y′′. The resulting equation of motion is given by initial value problem:

mÿ = mg − kẏ2 y(0) = y0, y
′(0) = v0.

here:

k =
1

2
ρACd,

where:

A: is the cross-sectional area of the falling body,
ρ: is the density of the fluid (air) through which the body is falling and
Cd: is the drag coefficient.
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Letting ẏ = v reduces this second order ODE to a first order ODE:

ẏ = g − k

m
v2 v(0) = v0.

Without solving the equation we can analyze the equation with a direction field. We can
see that depending on the starting velocity, the object will either accelerate to a terminal
velocity or decelerate from a starting velocity that is too high to a terminal velocity as a
result of the drag from the fluid (air). Thus we expect limt→∞ v(t) = vT , where vT is a
terminal velocity to be determined.

To solve the ODE rewrite it as:

v̇ = g
(
1− α2v2

)
,

where:

α2 =
k

mg
.

This form will make the integral simpler. We can now isolate the variables on opposite sides
of the equal sign and integrate to yield:ˆ

dv

1− α2v2
=

ˆ
g dt.

For the left-hand-side, we need to use integration by partial fractions. We have:ˆ
dv

1− α2v2
=

ˆ
dv

(1− αv)(1 + αv)
=

ˆ (
1

1 + αv
+

1

1− αv

)
dv

Returning to the original ODE and integrating we have:

1

α
log(1 + αv)− 1

α
log(1− αv) = gt+ C.

Simplifying we have:

log

(
1 + αv

1− αv

)
= αgt+ C.

This implies:

1 + αv

1− αv
= B exp(αgt),

where B = eC is still the constant of integration. We can solve for v by noting:

αv + αvB exp(αgt) = B exp(αgt)− 1.

Or:

v(t) =
1

α

B exp(αgt)− 1

B exp(αgt) + 1
.

At this point, we could use v(0) to find B from the expression:

1

α

B − 1

B + 1
= v0,
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Figure 4.4. (Left) The direction field shows that objects moving through a
fluid (like air) will either accelerate up to a terminal velocity or decelerate to a
terminal velocity if their initial velocity is faster than a certain value. (Right)
Mathematica’s stream plot of the same function.
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but we really don’t care about that. We care about the terminal velocity. We know that
doesn’t depend on the initial velocity. Therefore, we can just compute the limit to see:

vT = lim
t→∞

1

α

B exp(αgt)− 1

B exp(αgt) + 1
=

1

α
=

√
mg

k
.

We can expand k to obtain:

vT =

√
mg

1
2
ρACd

=

√
2mg

ρACd

.

For a human moving through air, it’s reasonable to set mass m = 70kg, density ρ ≈
1.225kg/m3, area A ≈ 0.25m2 (assuming a height of 2 meters and a waist size of 31in ≈
0.125m) and constant Cd ≈ 1. Therefore, we get a (rough) estimate of the terminal velocity
of a 70kg skydiver as:√

2 · 70 · 9.8
0.25 · 1.225

≈ 67m/s ≈ 150mph.

Experimental results range from 53m/s to 76m/s. Thus our theoretical result agrees nicely
with experimental results.

Remark 4.10. The terminal velocity example in the book does not apply to sky divers,
who are moving too fast. We will deal with the book example in a homework. That model
is called Stokes’ Drag.
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1. Isoclines

Definition 5.1 (Isocline). Suppose y′ = F (x, y). If k ∈ R, an isocline is the set:

Γk = {(x, y) : F (x, y) = k}.
An isocline is a curve in the (x, y) plane on which the slope is constant. .

Remark 5.2. When k = 0, this is sometimes called a nullcline – but this is more common
in systems of ODE’s, which we will come to later.

Derivation 5.3 (Isocline Method of Drawing Direction Fields). When F (x, y) is simple
enough to solve for the curve Γk, we can use the isoclines to draw a direction field.

(1) Choose a set K = {k1, . . . , kn}
(2) For each k ∈ K draw the curve F (x, y) = k. Denote this curve Γk.
(3) Choose points Xk = {(x1, y1), . . . , (xmk

, ymk
)} on Γk.

(4) At each point (x, y) ∈ Xk draw a small line segment with slope k.

Example 5.4. Consider the ODE:

y′ = ax− by

We can see the isoclines are given by F (x, y) = ax− by = k and so the curves are given by
the linear equation:

y =
a

b
x− k

b
.

Consequently the slope field is constant along lines. We illustrate this with a = b = 1 in
the figure below. It is worth noting that this ODE cannot be easily solved by isolating the
variables on opposite sides of the equal sign. The direction field (however) suggests that as
x→ ∞ we have y(x) → ∞, in a linearly.

2. Separable Equations

Definition 5.5 (Separable Equation). Let y′ = f(x, y) be an ODE and suppose:

f(x, y) = p(x)q(y)

Then the ODE is separable.

Remark 5.6. We have already seen many separable equations when we studied autonomous
ODE’s.

Theorem 5.7. Suppose y′ = p(x)q(y) is a separable ODE. Then the general solution is
given by the implicit equation:

(5.1)

ˆ
dy

q(y)
=

ˆ
p(x) dx

29
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Figure 5.1. (Left) The isoclines of the ODE y′ = x−y are shown. The slope
field has line segments of constant slope along lines as shown. (Right) The
solution curves suggest that the function increases linear for large x.

Proof. Define:

h(y) =
1

q(y)

and let H(y) be the antiderivative of h(y) so that H ′(y) = h(y) and let P (x) be the anti-
derivative of p(x). Then the ODE can be written as:

H ′(y)
dy

dx
= P ′(x).

Suppose y = φ(x) is a solution to the ODE. Then:

d

dx
{H[φ(x)]} = H ′[φ(x)]

dφ

dx
= G′(x) =

d

dx
[G(x)] .

by the chain rule. Then it follows that as a function of x, G(x) and H[φ(x)] have the same
derivative. Therefore, they must differ by at most a constant. That is:

H[φ(x)] = G(x) + C

for some constant C. Written implicitly this means:

H(y) = G(x) + C.

We can compute G(x) explicitly since:

H(y) = H[φ(x)] =

ˆ
d

dx
{H[φ(x)]} dx =

ˆ
G′(x) dx =

ˆ
p(x) dx = P (x) + C.

□

Remark 5.8. We are not going to do too many examples, since we’ve seen this solution
method extensively already.
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Example 5.9. Consider the initial value problem:

ẋ = αe−tx x(0) = x0

Then we have:ˆ
dx

x
=

ˆ
αe−t dt

Integrating yields:

log(x) = −αe−t + C

Taking the exponent yields:

x(t) = A exp
(
−αe−t

)
.

Using x(0) = x0 we conclude:

x0 = Ae−α =⇒ A = x0e
α.

Putting it together yield:

x(t) = x0e
α exp

(
−αe−t

)
= x0 exp

[
α(1− e−t)

]
.

Notice, unlike ẋ = αx which is unbounded if α > 0, this function does not have that property.
We have:

lim
t→∞

x0 exp
[
α(1− e−t)

]
= x0e

α.

The decaying constant αe−t keeps the exponential growth in check.

Example 5.10. Consider the following initial value problem:

y′ =
y − 1

x+ 2
y(0) = 0

We can separate this equation to obtain:ˆ
dy

y − 1
=

ˆ
dx

x+ 2
.

Now we have to be careful because we will have a logarithm on both sides and we must
remember to use an absolute value. Computing the integrals yields:

log |y − 1| = log |x+ 2|+ C.

We can solve for C now or solve for y (it won’t matter). Then we have:

exp (log |y − 1|) = A exp (log |x+ 2|) .
Simplifying yields the implicit function:

|y − 1| = A|x+ 2|.
Let’s solve for A using y(0) = 0. We have:

| − 1| = A|+ 2| =⇒ A =
1

2
.

Notice we expected A to be positive since A = eC – a fact we have more or less glossed
over till now. Because |y − 1| = ±(y − 1) and |x + 2| = ±(x + 2), we must use the initial
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condition one more time to determine which branch of the absolute values to use. We have
two options:

y − 1 =
1

2
(x+ 2) or y − 1 = −1

2
(x+ 2)

In the first equation we see that when x = 0, then since y(0) = 0 we have −1 = 1, which is
clearly wrong. Therefore we know we must have the solution:

y = 1− 1

2
(x+ 2) = −x

2
.

Remark 5.11. Before moving on, it is important to note that we must keep in mind the
regions where f(x, y) is continuous and differentiable in y in order to know when solutions
exist and are unique.
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1. Autonomous ODE’s and Fixed Points

Definition 6.1 (Autonomous ODE). A first order ordinary differential equation is au-
tonomous if it can be written as:

y′ = f(y).

That is, there are no independent variables explicitly on the right hand side of the equation.

Remark 6.2. We have already seen an autonomous ODE when we discussed exponential
growth and decay and while discussing viscous drag on a falling body. It turns out that
many systems can be modeled using autonomous ODE’s. Given the ODE y′ = f(y), then:ˆ

dy

f(x)
=

ˆ
dx = x+ C

describes an implicit solution to this ODE. However, finding the integral on the left-hand-
side might not be so easy. However, autonomous ODE’s admit a different kind of qualitative
analysis that is not always possible for non-autonoous ODE’s.

Definition 6.3 (Fixed/Equilibrium Point). A fixed (equilibrium) point of an autonomous
ODE y′ = f(y) is a value y∗ such that f(y∗) = 0 and thus if y(0) = y∗, then y(x) = y∗ for
all x.

Example 6.4. Consider the drag equation:

v̇ = mg − kv2.

Setting the right-hand-side equal to zero we have:

mg − kv2 = 0 =⇒ v∗ =

√
mg

k
=

√
2mg

ρACd

,

since:

k =
1

2
ρACd.

Thus, a skydiver who begins falling at terminal velocity will experience no acceleration since
v̇ = 0.

Example 6.5 (Logistic Growth). Exponential growth of a species is non-physical in the
long-run (even for viruses or bacteria). A more accurate model of growth is the logistic
equation. Let x(t) be the quantity of a population at time t. The population experiences
logistic growth if we have:

ẋ = αx(N − x),

33
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where N is the carrying capacity of the population and α is the growth rate. The carrying
capacity is the maximum number of individuals an environment can support. This ODE is
autonomous and so we can find the fixed points:

x(N − x) = 0 =⇒ x∗ = 0, x∗ = N.

This ODE has two fixed points. By drawing a direction field we can see that logistic growth
causes all initial populations to approach the carrying capacity. We can prove this analyti-

Figure 6.1. Logistic growth causes all initial population sizes (except the
zero population) to approach the carrying capacity. In this figure, N = 1.

cally by solving the ODE. We have:ˆ
dy

y(N − y)
=

ˆ
αdt

Applying integration by partial fractions we have:ˆ
dy

y(N − y)
=

ˆ
1

N

(
1

y
+

1

N − y

)
dy =

1

N
[log(y)− log(N − y)] .

Simplifying yields:

log

(
y

N − y

)
= αNt+ C.

Notice we are safe in not using absolute values since we assume y > 0 and we’re tacitly
assuming y < N . Solving for y yields:

N

y
= Ae−αNt + 1 =⇒ y(t) =

N

1 + Ae−αNt
,

where A is the constant of integration in disguise. If y(0) = y0 we can see:

y0 =
N

1 + A
=⇒ N − y0

y0
= A.

Taking the limit:

lim
t→∞

y(t) = lim
t→∞

N

1 + Ae−αNt
=
N

1
= 1,



2. STABILITY OF FIXED POINTS 35

no matter what the value of A. Thus we have confirmed out assertion that all population
sizes approach the carrying capacity.

2. Stability of Fixed Points

Remark 6.6. Given an IVP ẏ = f(y) with y(0) = y0, let φ(t; y0) denote the solution to the
IVP. That is, φ(0; y0) = y0 and φ̇ = f(φ).

Definition 6.7 (Stable Fixed Point). Consider an autonomous ODE ẏ = f(y) with initial
value y(0) = y0. A fixed point y∗ is stable if for all ϵ > 0 there is a δ > 0 so that if
|y0 − y∗| < δ, then |φ(t, y0)− y∗| < ϵ for all t ≥ 0.

Remark 6.8. The previous definition is not very intuitive. What it means is that a fixed
point is stable if solutions tend to stay near the fixed point if they start near the fixed point,
where “near” is a function of the system in question.

Definition 6.9 (Asymptotically Stable Fixed Point). Consider an autonomous ODE ẏ =
f(y) with initial value y(0) = y0. A fixed point y∗ is asymptotically stable if it is stable and

there is some δ̂ > 0 so that if |y0 − y∗| < δ̂ we have limt→∞ φ(t; y0) = y∗.

Remark 6.10. This means if you start close enough to the fixed point, you not only stay
near it you approach it as time goes to infinity. A fixed point is globally asymptotically stable
if no matter what y0 is, all solutions tend to y∗ as t→ ∞.

Example 6.11. We have already seen two asymptotically stable fixed points. The point
y∗ = N is an asymptotically stable fixed point in the logistic growth equation and y∗ =√
mg/k is the globally asymptotically stable terminal velocity in the drag equation.

Remark 6.12. We have also encountered another kind of fixed point, namely y∗ = 0 in the
logistic growth equation. This fixed point is certainly not stable. In fact, from Fig. 6.1 all
solutions that start near y∗ = 0 seem to “run away” from that point.

Definition 6.13 (Unstable Fixed Points). Consider an autonomous ODE ẏ = f(y) with
initial value y(0) = y0. A fixed point y∗ is unstable if it is not stable. It is asymptotically

unstable if there is some δ̂ so that |y0 − y∗| < δ̂ we have limt→−∞ φ(t; y0) = y∗.

Example 6.14. The point y∗ = 0 is asymptotically unstable. We can prove this. We
have already seen that this solution is unstable (by evaluating the slope field in Fig. 6.1).
Compute:

lim
t→−∞

y(t) = lim
t→−∞

N

1 + Ae−αNt
= 0.

Remark 6.15. Deducing that y∗ = N was stable and y∗ = 0 was unstable in the logistic
growth equation required solving the ODE and then taking a limit. Our goal is to find a
simpler way to do this.
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1. More on Stability

Lemma 7.1. If ẏ = α (y − a), then y∗ = a is stable if α < 0 and y∗ = a is unstable if α > 0.

Proof. Let u = y − a. Then u̇ = ẏ and we can replace the ODE with an equivalent
one: u̇ = αu. We know the solution here is u(t) = Aeαt. We can now replace u(x) with y(x)
to see:

y(t) = a+ Aeαt

If y(0) = a, then A = 0 and y(t) = a for all t, so a is a fixed point as required. Now if α < 0,
then:

lim
t→∞

a+ Aeαt = a,

now matter what A is. Likewise, if α > 0 then:

lim
t→−∞

a+ Aeαt = a.

This completes the proof. □

Remark 7.2. Note, this lemma says nothing if α is zero and that is by design.

Derivation 7.3. Consider the autonomous ODE ẏ = f(y) and suppose y∗ is a fixed point
of f(y); that is, f(y∗) = 0. Let us compute the Taylor expansion of f(y) about y∗. We have:

f(y) = f(y∗) + f ′(y∗)(y − y∗) + o(y2) = f ′(y∗)(y − y∗) + o(y2).

Here o(y2) just means there are higher order terms containing yn with n ≥ 2. We now
assume (with no justification at all) that close to the fixed point, we have:

ẏ ≈ f ′(y∗)(y − y∗).

Letting α = f ′(y∗), we can see from Lemma 7.1 that if f ′(y∗) > 0, then y = y∗ is unstable
and if f ′(y∗) < 0 then y = y∗ is stable.

We can justify this geometrically by looking at the logistic growth equation ẏ = y(1−y).
We know that y∗ = 0 and y∗ = 1. We can see that for y > 1, the lines in the slope field
all have negative slope. Thus the function is being driven back down toward y = 1. For
y ∈ (0, 1) the lines in the slope field all have positive slope. Thus the function is being driven
up from y = 0 to y = 1. The arrows on the left of Fig. 7.1(Left) illustrate this. The slopes
at the fixed point along with the function f(y) = y(1− y) and the direction the function is
being driven is shown by the arrows. These arrows are identical to the ones appearing on
the ordinate in Fig. 7.1(Left).
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Figure 7.1. (Left) The slope field showing the Logistic Growth equation with
arrows showing the direction y(t) is being driven on the ordinate. (Right) The
function f(y) is shown along with tangent lines (and hence slopes) at the fixed
points.

Theorem 7.4. Consider the autonomous ODE y′ = f(y) with fixed point y∗. If f ′(y∗) >
0, then y = y∗ is unstable. If f ′(y∗) < 0, then y = y∗ is stable. If f ′(y∗) = 0, then no
information can be obtained from f ′. □

Example 7.5. Consider the ODE ẋ = x2. This ODE has a single fixed point x∗ = 0,
but notice f(x) = x2 and f ′(x) = 2x, so f ′(0) = 0. So we can deduce nothing about the
stability of this fixed point. This is sensible. The function f(x) = x2 does not have a linear
approximation by Taylor series at x = 0.

We can solve this ODE to see:ˆ
dx

x2
=

ˆ
dt =⇒ −1

x
= t+ C.

If x(0) = x0 (and x0 ̸= 0) we have C = −1/x0. Thus:

x(t) =
1

1
x0

− t
=

x0
1− x0t

.

The last expression clears up the issue with x0 = 0 nicely. Now let us suppose x0 > 0. Notice
that when t = 0 we have x(0) = x0. But as t approaches t

∗ = 1/x0, we see the denominator
approaches 0 (from the right). Thus:

lim
t→t∗−

φ(t;x0) = ∞.

Thus, the solution does not stay close to x∗ = 0 when x0 > 0, so x∗ = 0 is not stable. In
fact, it exhibits a property called blow up because it goes off to infinity in finite time.

However, when x0 < 0 then 1− x0t > 0 for all t, so:

lim
t→t∗

φ(t;x0) = 0.

Consequently, x∗ = 0 appear stable from the left. This is an equilibrium of mixed type. In
a sense, it is stable in one direction and unstable in another direction. However, it is still
considered unstable.
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2. Potential Functions

Definition 7.6 (Potential Function). If y′ = f(y), then the potential function V (y) has the
property that:

f(y) = −dV
dy
.

Int computing V (y) as the negative of the antiderivative of f(y), we always set the arbitrary
constant to 0.

Example 7.7. Consider the simple ODE:

y′ = 3y2 − 3.

Then the potential function V (y) = 3y − y3. Notice the minima and maxima of V (y)
correspond to the fixed points of the ODE.

Theorem 7.8. Suppose y′ = f(y) is an autonomous ODE with potential function V (y).
Let y∗ be a fixed point of the ODE.

(1) If y∗ is a local minimum of V (y), then y∗ is stable.
(2) If y∗ is a local maximum of V (y), then y∗ is unstable.

Proof. We will prove the first assertion. The proof of the second assertion is nearly
identical. Since V (y) is an antiderivative of f(y) it is straight forward to see that if y∗ is a
local minimum of V (y), then −V ′(y∗) = f(y∗) = 0. Moreover, since y∗ is a local minimum, it
follows that V ′′(y) > 0 by the second derivative test, which implies that −V ′′(y∗) = f ′(y∗) <
0. The fact that y∗ is stable follows from Theorem 7.4. □

Remark 7.9. Potential functions are ubiquitous in physics and engineering, where they
are usually more general. In fact, gravity and electromagnetism can both be phrased and
studied in terms of their (common) potential functions. While this result doesn’t add much
to our study of fixed points, they can be useful to the study of fixed points even when the
nature of the fixed point cannot be analyzed with derivative information.

3. Bifurcations - Part 1

Derivation 7.10 (Saddle-Node Bifurcation). Consider the ODE:

y′ = r + y2.

We have three cases:

(1) If r < 0, then the ODE has two fixed points: y∗ = ±
√
−r. We know f ′(y) = 2y.

(a) When y∗ =
√
−r, then f ′(y∗) = 2

√
−r > 0 and y∗ =

√
−r is unstable.

(b) When y∗ = −
√
−r, then f ′(y∗) = −2

√
−r < 0 and y∗ = −

√
−r is stable.

(2) If r = 0, then the ODE has one fixed point. We have already seen that y∗ = 0 has
mixed stability.

(3) When r > 0, then r + y2 = 0 has no real solutions and there are no (real) fixed
points.

We can summarize these results in a table: Thus we see that the sign of the parameter r
has a serious impact on the qualitative nature of the solution curves (slope fields) we expect
to see. This is called a bifurcation and the point of bifurcation occurs at r = 0 because the
system goes from having two fixed points when r < 0 to having no fixed points when r > 0.
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Sign of r Fixed Points
r < 0 y∗ =

√
−r (unstable), y∗ = −

√
−r (stable)

r = 0 y∗ = 0 (mixed stability)
r > 0 No fixed points

Table 1. A table summarizing the impact the value of r has on the fixed
points and their stability of the ODE ˙y′ = r + y2.

Definition 7.11 (Bifurcation). Let y′ = f(y; r), where r is a parameter not a variable. A
bifurcation occurs at r = r∗ if the nature or number of fixed points of the autonomous ODE
y′ = f(y; r−) is different from the nature or number of fixed points of the autonomous ODE
y′ = f(y; r+) with r− < r∗ < r+.

Definition 7.12 (Saddle-Node Bifurcation). An ODE y′ = f(y; r) exhibits a saddle-node
bifurcation if it can be transformed into an equivalent ODE u′ = r + u2 or near the critical
value r∗ and fixed point x∗ well approximated (in the sense of Taylor) by u′ ≈ r∗ + u2. This
is called the normal form of the bifurcation.

Example 7.13 (Quota Harvesting). The following example comes from [Arn92]. Consider
a population that grows according to a logistic equation but is periodically harvested at a
constant rate c (called the quota). Population dynamics are given by the ODE:

ẋ = αx(N − x)− c = −αx2 − αNx− c

The fixed points of the system are:

(7.1) x∗ = −αN ±
√
α2N2 − 4αc

2α

When:

c <
αN2

4
,

there are two fixed points, one stable and the other unstable. On the other hand, if

c >
αN2

4

there are no real fixed points. This is a saddle-node bifurcation. We can put this into normal
form by first completing the square:

αx(N − x)− c = −α
(
x+

N

2

)2

−
(
c− αN2

4

)
Let:

s = c− αN2

4

v = x+
N

2

Then v̇ = ẋ and we can write:

v̇ = −αv2 − s
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Now let u = αv so that u̇ = −αv̇. Thus:

− 1

α
u̇ = −α 1

α2
u2 − s = − 1

α
u− s.

Simplifying:

u̇ = u2 + sα.

Let r = sα to see we have the equivalent system:

u̇ = u2 + r.

Thus, this is a Saddle-Node bifurcation.

Example 7.14 (Quota Harvesting Continued). For simplicity let α = N = 1. Using
Eq. (7.1), we see that if c > 1

4
, there are no fixed points. Moreover, since x(1 − x) − c < 0

for all x when c > 1
4
, we know that ẋ < 0 and thus the population will crash as a result over

over-harvesting. On the other hand, if c < 1
4
, then there is a single stable equilibrium point

and the population will approach that level with responsible harvesting.

Derivation 7.15 (Bifurcation Diagram). It is convenient to convey information about a
bifurcation graphically since Table 1 is nice, but a bit dense. To that end, note that in
y′ = r + y2, the fixed point(s) y∗ are functions of r. Therefore, we could draw a graph of
y∗(r). In the case of the Saddle-Node bifurcation, we know that:

y∗(r) = ±
√
−r.

This is a relation, not a function. However, we can plot the two fixed point values (in terms
of r), using a dashed line for the unstable fixed point and a solid line for the stable fixed
point. The point at r = 0 is shown with a half-shaded circle to indicate the fact that the

Figure 7.2. A bifurcation diagram for a saddle-node bifurcation. The pa-
rameter r varies on the abcissa, while the resulting fixed point (y∗) varies on
the ordinate. The two curves show the fixed points for varying values of r and
the line type shows their stability. The point mixed equilibrium at r = 0 is
shown with a half-shaded circle.

equilibrium at r = 0 is mixed (stable on the left and unstable on the right). This picture is
called a bifurcation diagram.
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1. Bifurcations - Part 2

Example 8.1 (Another Saddle-Node Bifurcation∗). A version of this example comes from
[DD92]. Consider the ODE:

ẋ = aex − x.

The resulting fixed point equation aex − x = 0 cannot be easily solved, but we can plot the
two functions aex and x and see where they intersect. Notice as a approach a∗ = 1/e the

Figure 8.1. An unusual example of a Saddle-Node bifurcation results from
the curve f(x) = aex moving to intersect the lines g(x) = x for different values
of a.

line g(x) = x becomes a tangent line with a single point of intersection x = 1. If a < a∗,
there are two fixed points corresponding to the two points of intersection between f(x) and
g(x). If a > a∗ there are no equilibrium points because f(x) and g(x) do not intersect.
A little analysis shows that when there are two fixed points, one is stable and the other
is unstable. Moreover, using a numerical solver we can construct a bifurcation diagram.
The constructed bifurcation diagram looks like a distorted form of Fig. 7.2, which is enough
enough to argue that this is just a saddle-node bifurcation. However, performing a Taylor
expansion (in two-dimensions) around the point a∗ = 1/e, x∗ = 1 leads to the second order
approximation:

aex − x ≈ 1

2
ea
(
x2 + 1

)
− x

Using appropriate scaling (as in Example 7.13), we can re-write the right-hand-side as u̇ =
u2 + r for a constant r and thus, this is a saddle-node bifurcation.

Remark 8.2. For the remaining bifurcations, we will not go into quite so much detail
(especially in terms of computing normal forms).
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Figure 8.2. A numerically constructed bifurcation diagram for ẋ = aex − x
shows a saddle-node bifurcation.

Derivation 8.3 (Transcritical Bifurcation). Consider the ODE:

(8.1) y′ = ry − y2 = y(r − y).

This is very similar to the logistic growth equation except now we allow r to take on any
real value as opposed to positive values (when it is a carrying capacity). The fixed points
of the ODE are y∗ = 0 and y∗ = r. Notice when r = 0 there is only one fixed point namely
y∗ = 0. We can compute:

d

dy
[y(r − y)] = r − 2y.

Using this information we have the following bifurcation table: The case when y∗ = r = 0

Sign of r Fixed Points
r < 0 y∗ = 0 (stable), y∗ = r (unstable)
r = 0 y∗ = 0 (mixed stability)
r > 0 y∗ = 0 (unstable), y∗ = r (stable)

Table 1. A table summarizing the impact the value of r has on the fixed

points and their stability of the ODE ˙y′ = y(r − y).

follows from the fact that y′ = −y2, which is just a variation on the ODE y′ = y2, which we
have already studied. From the table, we see that the fixed points switch stability at r∗ = 0,
though the fixed point y∗ = 0 is always present. The bifurcation diagram shows this switch.
This bifurcation is called a transcritical bifurcation with normal form given in Eq. (8.1).

Example 8.4 (Simple Laser∗). This example is discussed in [Str18]. A laser consists of
a cavity filled with a gain medium (Helium-Neon gas, for example), a mirror for reflection
and an optical coupler that allows light of a certain frequency to pass through. A simplified
model of the behavior of the laser can be thought of as follows: As energy is applied to the
gain medium (called pumping), electrons in orbit of the gain medium atoms become excited
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Figure 8.3. A bifurcation diagram for a transcritical bifurcation (in normal
form). Notice the the two fixed points y∗ = 0 and y∗ = r swap stability at
r∗ = 0.

Figure 8.4. A laser consists of a substance that emits light when stimulated
by energy (an electric field). At a certain level of stimulation, the light emitted
reaches a coherent frequency and is emitted as a focused beam, unlike a light
bulb which is emitted in all directions and frequencies.

and increase their energy level. As they fall back to a lower energy orbit, they emit photons.
Let n(t) be the number of photons in the laser cavity and let N(t) the number of excited
atoms in the cavity. When a photon and an excited atom interact, this causes the emission
of a new photon. At any time, a proportion of these photons exits (through the optical
coupler). We can write this as:

(8.2) ṅ = GNn− kn

Here G > 0 is called the gain coefficient (depending on the gain medium), k > 0 is the con-
stant of proportionality that governs the loss of photons and N(t)n(t) models the interaction
of excited atoms and photons.
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If we assume that the pumping energy keeps the total number of excited atoms constant
(in the absence of any interactions with photons), then we have

(8.3) N(t) = N0 − αn(t).

Here N0 is the number of excited atoms caused by the pumping. These excited atoms are
lost because of the emission of photons, which we model as αn(t), where α is another rate
constant. Combining Eqs. (8.2) and (8.3) we have:

ṅ = G(N0 − αn)n− kn = (GN0 − k −Gαn)n

Let’s simplify this equation by writing:

β = Gα

r =
GN0 − k

Gα
.

Then the equation becomes:

ṅ = βn(r − n).

There are two fixed points n∗ = 0 and n∗ = r. As in the normal form of the transcritical
bifurcation when r < 0, n∗ = 0 is stable. That is, the number of photons in the laser cavity
will approach zero and the apparatus will act like a lamp. However, when r > 0 then n∗ = r
is stable and the apparatus maintains a constant number of photons in the laser cavity. This
coherence is what produces a laser. In particular we have:

GN0 − k

Gα
> 0 =⇒ N0 >

k

G
.

Thus, as we increase the pumping energy N0, we reach a threshold (bifurcation) where the
apparatus spontaneously becomes a laser (instead of a lamp). The value N0 = k/G is called
the laser threshold.

2. Bifurcations - Part 3

Derivation 8.5 (Supercritical Pitchfork Bifurcation). Consider the ODE:

y′ = ry − y3 = y(r − y2).

This ODE has three fixed points when r > 0: y∗ = 0 and y∗ = ±
√
r. Since:

(8.4)
d

dy

[
y(r − y2)

]
= r − 3y2,

we can see in this case that y∗ = 0 is unstable while y∗ = ±
√
r must be stable.

When r = 0 there is only one fixed point y∗ = 0 and the ODE becomes:

y′ = −y3.
Solving this ODE (as we have done in the past) yields:ˆ

dy

y3
=

ˆ
−dx,

or

− 1

2y2
= −x+ C.
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If y(0) = y0, then C = −(2y20)
−1. We can solve for y(x) as:

y2 =
1

1
y20

+ 2x
.

If y0 > 0, we use the positive branch to see:

y =
1√

1
y20

+ 2x
.

As x → ∞, y → 0 and so y∗ = 0 must be stable. If y0 < 0 then we use the negative branch
to see:

y = − 1√
1
y20

+ 2x
.

However as x→ ∞, y → 0 and so y∗ = 0 must be stable.
Finally when r < 0, there is only one fixed point y∗ = 0 and it must be stable by Eq. (8.4).

Two of these three cases are illustrated using slope fields. We can use this information to

Figure 8.5. (Left) Direction field for the case when r > 0 showing two stable
fixed points at y∗ = ±

√
r. Her r = 1. (Right) Direction field for the case when

r < 0 showing one stable fixed point y∗ = 0.

construct a bifurcation chart, that looks like a pitchfork.
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Figure 8.6. The bifurcation diagram, which looks like a pitchfork.



LESSON 9

1. Bifurcations - Part 4

Derivation 9.1 (Subcrcritical Pitchfork Bifurcation). Consider the ODE:

y′ = y(r + y2).

Not surprisingly, this also exhibits a pitchfork bifurcation, but its behavior is different. As
an exercise, you can verify the following table describing the fixed points. This leads to a

Sign of r Fixed Points
r < 0 y∗ = 0 (stable), y∗ = ±

√
−r (unstable)

r = 0 y∗ = 0 (unstable-blowup)
r > 0 y∗ = 0 (unstable)

Table 1. A table summarizing the impact the value of r has on the fixed

points and their stability of the ODE ˙y′ = y(r + y2).

bifurcation diagram that looks like a different kind of pitchfork, which you should also verify.

Figure 9.1. The bifurcation diagram, which looks like a different kind of
pitchfork.

Example 9.2 (Magnetizing a Metal∗). The mathematics of this example is covered in
[Str18], but the physics is nicely discussed in [Aro11]. The Ising-Curie-Weiss model of
magnetism is crude but illustrative of the action of putting an magnetizable object into a
magnetic field. (Have you ever been to an inexpensive restaurant and noticed the silverware
is a little magnetic? It’s been magnetized by strong magnets kept in the trash cans to keep
silverware from being thrown out.) Let M be the magnetization (a measurement of how
magnetic something is) of an object. Let H be an externally applied magnetic field. Usually
these are vector quantities, but we’re working in one dimemsion.

49
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The free energy (essentially a measure of how much reversible work a system can do)
of the system (sample and magnetic field) can be neatly approximated as a function of the
magnetic field and the magnetization as:

f(M,H) ≈ −HM +
1

2
aM2 +

1

4
bM4 + · · ·

Here a and b are constants that depend on the temperature. This is sometimes called the
Landau expansion.

As you may have noticed, nature likes things to be in minimal energy states, so the
dynamics of the magnetization can be modeled as:

Ṁ = −Γ
∂f

∂M
,

where Γ > 0. This is a mathematical way of saying that the magnetization of the sample
will keep changing until the free energy reaches a local minimum in terms of M – because
then ∂Mf = 0. Using this, we can show that free energy is a decreasing function of time (as
we might intuit), but we don’t need this fact.

More simply we have:

Ṁ = HΓ− aΓM − bΓM3.

We can get rid of some of these coefficients by letting:

u =
√
bΓM

r = −aΓ

h =
√
bΓ3H.

Then:

u̇ =
√
bΓṀ =

√
bΓ

(
HΓ + r

1√
bΓ
u− bΓ

1
√
bΓ

3u
3

)
.

Notice: √
bΓ(HΓ) =

√
bΓ(

√
Γ2H) =

√
bΓ3H = h

√
bΓ

(
r

1√
bΓ

)
= r

√
bΓ

(
bΓ

1
√
bΓ

3

)
= 1

This leads to the ODE:

u̇ = h+ ru− u3,

with potential function V (u) = 1
4
u4 − 1

2
ru2 − hu. This is just a scaled version of free energy

(which we are trying to minimize). Thus, free energy is (up to scale) just a potential function.
When h = 0, clearly this exhibits a supercritical pitchfork bifurcation. However, that

assumes the external magnetic field is zero (or b = 0, which is unlikely). We can study
this symmetry broken or imperfect bifurcation. Finding fixed points of the function f(u) =
h + ru− u3 is non-trivial as we know there may be 1, 2 or 3 roots. However, we can study
the two functions h + ru and u3. From Fig. 9.2 we can see that for fixed h as r increases
there is a special r∗ where r∗u+h is tangent to u3 and also intersects it at a second (distinct)
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Figure 9.2. For fixed h (here h = 1) as r increases toward r∗ = 3

(
4−

1
3

)
we

see one fixed point bifurcates into three fixed points.

location. For r < r∗, we have one fixed point. For r > r∗, we have three fixed points. We
can find this point using a first order Taylor expansion of u3 about a point u = u0. We would
need:

u30 + 3u20(u− u0) = h+ ru

The expression on the left is the tangent line while the expression on the right is the line we
are given. Equating terms with and without u we have:

u30 − 3u30 = −2u30 = h(9.1)

3u20 = r(9.2)

Since h is fixed we have:

u0 = − 3

√
h

2

r∗ = 3

(
3

√
h

2

)2

It is worth noting that r∗ > 0 and hence if r < 0 we can be certain there is at most 1 fixed
point (we will use this later).

For each instance of this problem, the exact fixed points need to be found numerically
and their stability determined from f ′(u) = r − 3u2. However, we can make an educated
guess about their stability. The potential function V (u) is a positive quartic. This suggests
it should have two local minima and one local maxima. Thus we expect to see two stable
equilibria and one unstable equilibrium between these stable points. This is what we see for
the case when h = 1 and r = 3 in Fig. 9.3. The asymmetric bifurcation diagram is illustrated
in Fig. 9.4. Notice it resembles the pitchfork bifurcation we have seen, but the symmetry
breaking term h > 0 causes the distortion.

The physical interpretation of this diagram is the more interesting part. For r < r∗,
there is a single stable fixed point; that is there is one state of magnetization for the sample
(silverware). As r increases past r∗, there are two stable magnetization equilibria and the
system cannot move between them (because it would require passing through an unstable
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Figure 9.3. The potential function for r = 3, h = 1.

Figure 9.4. (Left) The imperfect pitchfork bifurcation exhibits symmetry
breaking, but the expected one stable equilibrium becoming two stable and
one unstable equilibria.

fixed point). These two stable equilibria correspond to the two possible magnetic regimes to
which the system will stabilize depending on the initial condition.

Example 9.3 (Magnetizing a Metal - Part 2). In the previous example, we varied r. Let us
now vary h. We know already that for any h, if r < 0, there is only one fixed point (and it
is stable). Now suppose r > 0. We can use Eqs. (9.1) and (9.2) again (assuming r is fixed)
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to see that:

u0 = ±
√
r

3

h∗ = ±2

√(r
3

)3
.

That is, there are two critical values of h. The behavior (and emergence) of these two critical
h values is shown in Fig. 9.5. This makes sense. Consider Fig. 9.2, where we see as h moves

Figure 9.5. The two critical values of h emerge as r crosses from negative
to positive.

up and down, the point of tangency changes on the curve; i.e., there are two potential tangent
points depending on h. This is not the case when h is fixed and r changes. Thus, as we vary
h, two fixed points emerge and then disappear. For simplicity, let:

h∗ = 2

√(r
3

)3
.

If h ∈ (−h∗, h∗), then there are three fixed points. Otherwise there is one fixed point (or
two in the boundary cases – which we’ll ignore). This is a type of saddle-node bifurcation
in which two fixed points emerge (out of nowhere) with opposite stability. The bifurcation
diagrams for the case when r < 0 (showing one stable fixed point) and r > 0 (showing
regions where there are one, two or three fixed points) is shown in Fig. 9.6.

We can now construct a physical interpretation. Since h is a function of H the applied
magnetic field varying h means varying the magnetic field. As we change the magnetic field,
the resulting magnetization (fixed point) changes from one that is not dependent on the
initial condition of the object (one stable fixed point) to one that is dependent on the initial
condition of the sample (two stable fixed points separated by an unstable fixed point). Here,
“initial condition” means how magnetized the object is at the start of time. Thus, objects
that are highly magnetized tend to stay magnetized. However, if the magnetic field is strong
enough, the long-term magnetization again no longer depends on the initial condition. When
h ∈ (−h∗, h∗) the object (silverware) is said to exhibit hysteresis – that is a a dependence
on its history (starting condition).

Remark 9.4. There are many other bifurcations in the literature and we don’t have time
to deal with them all. Bifurcation theory forms an important part of the study of nonlinear
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Figure 9.6. (Left) The bifurcation diagram for u∗ vs. h when r < 0 shows
there is only one stable equilibrium. (Right) The bifurcation diagram for u∗

vs. h when r > 0 shows there is are three equilibria when h ∈ (−h∗, h∗), two
stable and one unstable. When h is outside this interval, there is only one
stable equilibrium.

dynamics – which we are preparing to leave for a while in order to return to the problem of
finding explicit solutions for ordinary differential equations.
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Quantitative Analysis of First Order ODEs
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1. Linear First Order Equations - Integrating Factors

Remark 10.1. Consider a linear first order ODE with form:

a(x)y′ + b(x)y + c(x) = 0.

This equation can always be rewritten as:

y′ +
b(x)

a(x)
y = − c(x)

a(x)

or more simply:

y′ + p(x)y = q(x)

for functions p(x) and q(x). We will assume all ODE’s are in this form for the rest of this
section.

Derivation 10.2. Consider the ODE:

y′ + p(x)y = q(x)

and let µ(x) be a function to be determined. We will call this an integrating factor. Then
we can write:

µ(x)y′ + [µ(x)p(x)] y = q(x)µ(x)

If we could force:

(10.1) µ′(x) = µ(x)p(x),

then we would have:

µ(x)y′ + [µ(x)p(x)] = µy′ + µ′y =
d

dx
(µy) = q(x)µ(x).

Using the Fundamental Theorem of Calculus we could then integrate to see:

µy =

ˆ
µ(x)q(x) dx.

Then we would have a solution:

y(x) =
1

µ(x)

(ˆ
µ(x)q(x) dx

)
,

where we would introduce a constant of integration after integration on the right-hand-side.
All that remains is to make Eq. (10.1) true is to find the missing µ(x).

Recall from the chain rule for some arbitrary differentiable function P (x) we have:

d

dx
{exp[P (x)]} = P ′(x) exp[P (x)].

57
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Therefore, if P (x) is the antiderivative (with no arbitrary constant) of p(x), then clearly it
is differentiable and we would have:

d

dx
{exp[P (x)]} = p(x) exp[P (x)].

Therefore, we could define µ(x) = exp[P (x)] to make Eq. (10.1) true. Written in integral
form, we have:

µ(x) = exp

[ˆ
p(x) dx

]
.

Again, we do not introduce a constant of integration into µ(x). Therefore we have deduced
that the solution to the ODE is:

y(x) =
1

exp
[´
p(x) dx

] (ˆ exp

[ˆ
p(x) dx

]
q(x) dx

)
.

Remark 10.3. The function µ(x) is called an integrating factor. It is a function that makes
it possible to explicitly solve (integrate) the ordinary differential equation.

Remark 10.4. As a consequence of the derivation, we have proved a theorem.

Theorem 10.5. If p(x) and q(x) are continuous on the interval I = (a, b) and x0 ∈ I,
then the initial value problem:

y′ + p(x)y = q(x) y(x0) = y0

has a unique solution. Furthermore, if P (x) is the antiderivative (with no arbitrary constant)
of p(x) and:

µ(x) = exp [P (x)] ,

then the unique solution is given by:

y(x) =
1

µ(x)
(H(x) + C) ,

where H(x) is the antiderivative (with no arbitrary constant) of the function h(x) = µ(x)q(x)
and:

C = µ(x0)y0 −H(x0).

□

Example 10.6. Consider the initial value problem:

y′ + cos(x)y = cos(x) y(0) = 0.

Here we have: p(x) = q(x) = cos(x). Integrating we see P (x) = sin(x) and so:

µ(x) = exp[sin(x)].

Then h(x) = cos(x) exp[sin(x)]. Integrating we have:

H(x) =

ˆ
cos(x) exp[sin(x)] dx.

Let u = sin(x) and du = cos(x) dx. Using u substitution the integral becomes:

H(x) =

ˆ
eu du = eu = exp[sin(x)].
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The solution general solution is:

y(x) =
1

exp[sin(x)]
(exp[sin(x)] + C) = 1 + C exp[− sin(x)].

Evaluating at x0 = 0, y0 = 0 gives a constant:

C = exp[sin(0)] · (0)− exp[sin(0)] = −1.

The specific solution is then:

y(x) = 1− exp[− sin(x)].

We can check this result. Note:
d

dx
{1− exp[− sin(x)]} = exp[− sin(x)] cos(x)

So:

y′ + cos(x)y = exp[− sin(x)] cos(x) + cos(x) {1− exp[− sin(x)]} = cos(x),

as required.
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1. Constants of Integration

Remark 11.1 (Constants of Integration). You’ll notice we’ve had some tortured language
in dealing with those constants of integration. There is a nice mathematical way around this
when given an initial condition. For example, if you have a separable ODE:

f(y)
dy

dx
= g(x) y(x0) = y0

you write:ˆ y

y0

f(s) ds =

ˆ x

x0

g(t) dt.

Here s and t are both dummy1 variables.

Example 11.2. To be more concrete if we had ẋ = αx then we have:ˆ x

x0

ds

s
=

ˆ t

t0

dt.

This implies:

log(x)− log(x0) = log

(
x

x0

)
= α(t− t0).

Simplified this yields the familiar answer:

x(t) = x0 exp[α(t− t0)],

which is identical to the solution we’ve seen when t0 = 0.

Derivation 11.3. To see how this works in the context of Derivation 10.2 , let’s go back to
this step:

d

dx
[µ(x)y(x)] = q(x)µ(x).

We can now write this as:

d [µ(x)y(x)] = q(x)µ(x) dx,

and integrate:

(11.1)

ˆ x

x0

d [µ(s)y(s)] =

ˆ x

x0

q(s)µ(s) ds,

1British sense, not North American: “Something designed to serve as a substitute.”
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The expression on the left-hand-side is called a Riemann–Stieltjes integral (or sometimes
just a Stieltjes integral). Following our previous work, let:ˆ x

x0

q(s)µ(s) ds = H(x)−H(x0),

where:

H(x) =

ˆ
µ(x)q(x) dx,

which now represents the formal antiderivative (no constant of integration). Then Eq. (11.1)
simplifies to:

µ(x)y(x)− µ(x0)y(x0) = H(x)−H(x0).

Note that y(x0) = y0 by assumption. Solving for y(x) we have:

y(x) =
1

µ(x)
[H(x) + µ(x0)y0 −H(x0)] ,

just as before. You can decide for yourself which of these two methods of derivation is less
painful.

2. Decay Paths and Cascading Linear Systems

Remark 11.4. We can use our results in general solutions to first order linear systems to
analyze nuclear decay paths. The idea for these examples comes from [BC98].

Example 11.5. Uranium-234 (234U) decays into Thorium-230 (230Th), which in turn decays
into various other elements (Radium, Neon and Mercury). The half-life of 234U is τ1 =
2.46 × 105 years while the half-life of 230Th is τ2 = 7.54 × 104 years. Let k1 be the decay
constant of 234U and k2 be the decay constant of 234U. Recall from Eq. (2.1) that:

ki =
log(2)

τi
, i = 1, 2.

If y1 is the quantity of 234U and y2 is the quantity of 230Th, then we can model the two
quantities as:

ẏ1 = −k1y1
ẏ2 = k1y1 − k2y2.

If y1(0) = m1 and y2(0) = m2 are the initial masses, we can compute:

y1(t) = m1 exp(−k1t),
which yields an ODE for y2:

ẏ2 + k2y2 = k1m1 exp(−k1t).
We can now compute the integrating factor:

µ(t) = exp

(ˆ
k2 dt

)
= ek2t.

Then we have:

h(t) = ek2t · k1m1e
−k1t = k1m1e

(k2−k1)t.
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Integrating we see:

H(t) =

ˆ
k1m1e

(k2−k1)t dt =
k1m1

k2 − k1
e(k2−k1)t.

Thus we have:

y2(t) = e−k2t

(
k1m1

k2 − k1
e(k2−k1)t + C

)
.

Solving for C we have:

C = m2 −
k1m1

k2 − k1
.

Thus the complete solution is:

y2(t) =
k1m1

k2 − k1
e−k1t +m2e

−k2t − k1m1

k2 − k1
e−k2t =

k1m1

k2 − k1

(
e−k1t − e−k2t

)
+m2e

−k2t.

Example 11.6. You can perform the steps we used in Derivation 10.2 on a specific example
as an alternative to using the formula in the theorem. Consider the ODE:

1

x
y′ +

2

x2
y =

sec2(x)

x3
.

To solve this ODE, we first multiply through by x to obtain:

y′ +
2

x
y =

sec2(x)

x2
.

The integrating factor is:

µ(x) = exp

(ˆ
2

x
dx

)
= x2

Then:

x2
dy

dx
+ 2xy =

d

dx

(
x2y
)
= sec2(x).

Integrating we have:

x2y = tan(x) + C.

We conclude that:

y(x) =
C

x2
+

tan(x)

x2
.

As expected from the initial form of the ODE, the solution is only valid for initial conditions
intervals where sec(x) and 1/x are continuous a fact that is reflected in the solution as well.
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3. Exact Equations∗

Derivation 11.7. Consider a nonlinear ODE with form:
dy

dx
= −u(x, y)/v(x, y).

This equation is not necessarily separable, but we could write it as:

(11.2) u(x, y) + v(x, y)
dy

dx
dy = 0.

We know that y(x) is a function of x and we recall that if we have the implicitly define
ψ(x, y) = C (for some C ∈ R) then the implicit derivative is computed as:

d

dx
ψ(x, y) =

∂ψ

∂x
+
∂ψ

∂y

dy

dx
= 0,

which is really just a special application of the chain rule. Therefore if there exists an ψ(x, y)
so that:

∂ψ

∂x
= u(x, y)(11.3)

∂ψ

∂y
= v(x, y),(11.4)

then we know that a y(x) must be defined implicitly by the equation ψ(x, y) = C for some
C, where C is the constant of integration and this is the solution to the differential equation.
Notice we are making liberal use of the implicit function theorem here.

It is worth noting that Eq. (11.2) can be rewritten as:

(11.5) u(x, y) dx+ v(x, y) dy = 0,

where u(x, y) dx + v(x, y) dy is called a differential form. If a function ψ exists so that
Eqs. (11.3) and (11.4) hold, then ψ is called a potential function. In this case, since we have:

d

dx
ψ(x, y) = u(x, y) + v(x, y)

dy

dx
= 0,

then we can write:

dψ = u(x, y) dx+ v(x, y) dy,

where dψ is called the total differential of ψ.

Example 11.8. Rather than working backwards to ψ, let’s work forwards from ψ to a
differential equation. Define:

ψ(x, y) = x2 + y2.

If ψ(x, y) = r2 for r ∈ R, then this is the equation for a circle or radius r. Differentiating we
have:

dψ

dx
= 2x+ 2yy′ = 0.

This is a differential equation, which we can rewrite as:

y′ = −x
y
.

Obviously this is a separable differential equation, and easily solved, but in this case we
know already the solution is given by the implicit function ψ(x, y) = x2 + y2 = C.
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Definition 11.9 (Differential Form & Exact Equations). A differential form u(x, y) dx +
v(x, y) dy is exact in a rectangle R = [a, b]× [c, d] if there is a potential function ψ(x, y) such
that:

∂ψ

∂x
= u(x, y)

∂ψ

∂y
= v(x, y).

In this case dψ = u(x, y) dx+ v(x, y) dy. The resulting equation: u(x, y) dx+ v(x, y) dy = 0
is called an exact equation.

Remark 11.10. We now want to develop some criteria that will help us determine whether
a differential equation is exact.

Lemma 11.11. Let ψ(x, y) be differentiable for all (x, y) ∈ [a, b]× [c, d] = R (a rectangle).
If:

∂ψ

∂x
= u(x, y)

∂ψ

∂y
= v(x, y).

then:

(11.6)
∂u

∂y
=
∂v

∂x

in R. That is, if u(x, y) dx+ v(x, y) dy = 0 is exact, then Eq. (11.6) holds.

Proof. We have:

∂u

∂y
=

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x
=
∂v

∂x
,

because the differential operator commutes. □





LESSON 12

1. More on Exact Equations∗

Remark 12.1. In Lemma Lemma 11.11 we found a necessary criterion for exactness. We
now show this criterion is sufficient.

Lemma 12.2. Let u(x, y) and v(x, y) be continuously differentiable functions in a rectangle
R. If

∂u

∂y
=
∂v

∂x
,

then there is a differentiable potential function ψ(x, y) defined in R such that

∂ψ

∂x
= u(x, y)

∂ψ

∂y
= v(x, y).

Proof. We will construct ψ(x, y). First for some (arbitrary) x0 define:

(12.1) ψ(x, y) =

ˆ
u(x, y) dx+ C(y).

Here: ˆ
u(x, y) dx

is the formal antiderivative of u(x, y) in terms of x. Notice in Eq. (12.1), since we are
(essentially) integrating with respect to x, the constant of integration is not just a constant
value but is a function of y. (To see this, imagine what would happen if the integral were
definite. We would be left with an extra function of y.) As a result ∂xΨ(x, y) = u(x, y).

We now wish to find a particular C(y) so that ∂yψ = v(x, y). This means we require:

∂ψ

∂y
= v(x, y) =

∂

∂y

[ˆ
u(x, y) dx+ C(y)

]
=

∂

∂y

[ˆ
u(x, y) dx

]
+ C ′(y).

Solving for C ′(y) yields:

(12.2) C ′(y) = v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]
.

This equation is sensible (valid) if (and only if) the right-hand-side is not a function of x.
This can be checked by differentiating with respect to x to see:

∂

∂x

{
v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]}
=
∂v

∂x
− ∂

∂x

∂

∂y

[ˆ
u(x, y) dx

]
.
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Apply the Leibniz rule (because all functions are continuously differentiable) we can exchange
integration and differentiation to see:

∂

∂x

{
v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]}
=
∂v

∂x
− ∂

∂x

[ˆ
∂u

∂y
dx

]
=

∂v

∂x
− ∂

∂x

[ˆ
∂v

∂x
dx

]
,

because ∂yu = ∂xv. But then we have:

∂

∂x

{
v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]}
=
∂v

∂x
− ∂v

∂x
= 0.

Thus C ′(y) is a function of y alone and the right-hand-side of Eq. (12.2) can be integrated
in terms of y to produce a function. In particular, integrating Eq. (12.2) with respect to y
yields:

C(y) =

ˆ {
v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]}
dy

and:

ψ(x, y) =

ˆ
u(x, y) dx+ C(y).

This function is a potential function by construction. □

Remark 12.3. Putting Derivation 11.7 and Lemmas 11.11 and 12.2 together, we have proved
a theorem.

Theorem 12.4. If u(x, y) and v(x, y) are continuously differentiable in a rectangle R,
then the differential form u(x, y) dx+ v(x, y) dy is exact if and only if

∂u

∂y
=
∂v

∂x

and therefore there is a potential function ψ with: u = ∂xψ and v = ∂yψ. □

Example 12.5. This was all pretty abstract. Let’s work an example and build some clear
steps to determine whether a differential equation is exact. Consider the ODE:

dy

dx
= −3x2 + 2xy + 2

x2 + 6y2
.

Step 1: Write the equation as a differential form: We have:

(3x2 + 2xy + 2) dx+ (x2 + 6y2) dy = 0.

Step 2: Find u(x, y) and v(x, y) and check if ∂yu = ∂xv: We have:

u(x, y) = 3x2 + 2xy + 2 v(x, y) = x2 + 6y2.

We check:

∂u

∂y
= 2x =

∂v

∂x
.
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Since the criterion we established is met, we have an exact ODE.

Step 3: Compute v(x, y)− ∂y
´
u(x, y) dx: We can compute C ′(y) as:

C ′(y) = v(x, y)− ∂

∂y

[ˆ
u(x, y) dx

]
= (x2 + 6y2)− ∂

∂y

[ˆ
(3x2 + 2xy + 2) dx

]
=

(x2 + 6y2) − ∂

∂y

[
x3 + x2y + 2x

]
= (x2 + 6y2) − x2 = 6y2.

As expected C(y) is just a function of y.

Step 4: Compute C(y) by integration: This step is easy:

C(y) =

ˆ
6y2 dy = 2y3.

Step 5: Compute ψ(x, y) as
´
u(x, y) dx+ C(y): We have:

ψ(x, y) =

ˆ
u(x, y) dx+ C(y) =

ˆ
(3x2 + 2xy + 2) dx+ 2y3 = x3 + x2y + 2x+ 2y3.

Step 6: Solve the ODE: The solution is:

ψ(x, y) = x3 + x2y + 2x+ 2y3 = A,

for some constant A that can be determined by initial conditions, if they are given. The
direction field of the ODE and a contour plot of ψ(x, y) are shown illustrating that ψ(x, y) =
A is the general solution to the ODE.

Figure 12.1. The contour plot of ψ(x, y) is shown along with the direction
field of the ODE.
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Example 12.6 (Flow Around a Cylinder). This next example is algebraically messy, so use
a computer algebra system to work out the details yourself, if you want. The details of fluid
flow can be found in [BB00]. Consider the unusual exact differential form:

2R2Uxy

(x2 + y2)2
dx+

[
R2U (y2 − x2)

(x2 + y2)2
+ U

]
dy = 0,

where R and U are two positive constants. We can verify (with a computer algebra system)
that this yields an exact ODE by showing:

∂

∂y

[
2R2Uxy

(x2 + y2)2

]
=

2R2Ux (x2 − 3y2)

(x2 + y2)3
=

∂

∂x

[
R2U (y2 − x2)

(x2 + y2)2
+ U

]
.

Therefore, this defines and exact differential equation. Amazingly, one can show that:

C ′(y) = U +
R2U (y2 − x2)

(x2 + y2)2
− ∂

∂y

[ˆ
2R2Uxy

(x2 + y2)2
dx

]
= U.

Therefore, C(y) = Uy. Then:

ψ(x, y) = Uy +

ˆ
2R2Uxy

(x2 + y2)2
dx = Uy

(
1− R2

x2 + y2

)
.

Solutions have the form:

Uy

(
1− R2

x2 + y2

)
= A.

The question is: What is this? A decorated direction field plot will help. If U = 1 = R we
have the direction field shown below. Solutions to this ODE describe the streamlines around

Figure 12.2. The solution to this ODE yields flow lines around a cylinder
in an incompressible and irrotational fluid. The cylinder is shown from the
overhead view.
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a fluid that is incompressible and irrotational with a left-to-right velocity of U far away from
the cylinder of radius R (shown here as a white circle).

Remark 12.7. Normally, getting to ψ(x, y) in the last example would not be done by an
ODE, but would be done by solving a PDE and manipulating that solution to derive the
stream function directly. In particular, this explains (physically) why stream functions satisfy
the equation ψ(x, y) = A. Also, the solution would normally be given in polar coordinates.
I’ve short-circuited the derivation a little to give you a sense of where these types of results
arise. Analysis of the flow around objects forms the basis for modern aerospace engineering.





LESSON 13

1. Integrating Factors - Redux∗

Derivation 13.1. Consider an equation we’ve already solved:

dy

dx
+ p(x)y = q(x).

Rewriting this we have:

(13.1) [p(x)y − q(x)] dx+ dy = 0.

Let u(x, y) = p(x)y−q(x) and v(x, y) = 1. Clearly this equation is not exact unless p(x) = 0
because:

∂u

∂y
= p(x) ̸= ∂v

∂x
= 0.

However, recall we defined:

µ(x) = exp

[ˆ
p(x) dx

]
.

Now observe we can multiply Eq. (13.1) by µ(x):

[p(x)y − q(x)]µ(x) dx+ µ(x)dy = 0.

Solutions to this equation must (necessarily) be identical to the original equation but, this
new equation is exact as we’ll show. We have now have:

u(x, y) = p(x)y exp

[ˆ
p(x) dx

]
− q(x) exp

[ˆ
p(x) dx

]
v(x, y) = exp

[ˆ
p(x) dx

]
.

We now see that:

∂u

∂y
= p(x)

[ˆ
p(x) dx

]
=
∂v

∂x
.

Thus we have converted the original equation into an exact equation, which we know can be
solved with a potential function. This idea can be generalized.

Definition 13.2 (Integrating Factor). Consider the differential form:

f(x, y) dx+ g(x, y) dy = 0.

If this does not yield an exact differential equation but there is a function µ(x, y) such that:

µ(x, y)f(x, y) dx+ µ(x, y)g(x, y) dy = 0.

does yield an exact differential equation, then µ(x, y) is called an integrating factor.
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Example 13.3. It is non-trivial to find an integrating factor (if one even exists). However,
here is an example. Consider:

3y2 + 8x+ 4xy
dy

dx
= 0.

Then we have:

u(x, y) = 3y2 + 8x v(x, y) = 4xy.

We have:
∂u

∂y
= 6y ̸= ∂v

∂x
= 4y.

Let µ(x, y) =
√
x. Then we redefine:

u(x, y) = (3y2 + 8x)
√
x v(x, y) = 4xy

√
x.

Now:
∂u

∂y
= 6y

√
x =

∂v

∂x
.

We could now find a potential function that will yield solution curves to the original problem.

Derivation 13.4. We derive a special case when we can find an integrating factor. Suppose

f(x, y) dx+ g(x, y) dy = 0.

is not an exact differential equation. We seek a function µ(x, y) so that:

µ(x, y)f(x, y) dx+ µ(x, y)g(x, y) dy = 0.

This implies

∂

∂y
[µ(x, y)f(x, y)] =

∂

∂x
[µ(x, y)g(x, y)] .

Expanding we have:

f
∂µ

∂y
+ µ

∂f

∂y
= g

∂µ

∂x
+ µ

∂g

∂x
.

Factoring this gives the partial differential equation:

µ

[
∂f

∂y
− ∂g

∂x

]
= g

∂µ

∂x
− f

∂µ

∂y
.

This is not easy to solve unless µ(x, y) = µ(x); that is, µ is just a function of x. In this case,
our PDE becomes and ODE:

1

µ

dµ

dx
=

1

g

[
∂f

∂y
− ∂g

∂x

]
just in case the right-hand-side is a function of x alone. That is:

1

g

[
∂f

∂y
− ∂g

∂x

]
= p(x).

In this case, we can solve:

1

µ

dµ

dx
= p(x)



1. INTEGRATING FACTORS - REDUX∗ 75

to see:

µ(x) = exp

[ˆ
p(x) dx

]
.

Theorem 13.5. Consider the differential equation:

(13.2) f(x, y) + g(x, y)
dy

dx
= 0.

If

1

g

[
∂f

∂y
− ∂g

∂x

]
is a function of x alone, denoted p(x), then when:

µ(x) = exp

[ˆ
p(x) dx

]
.

the differential equation:

f(x, y)µ(x) + g(x, y)µ(x)
dy

dx
= 0

is exact and can be solved with a potential function ψ(x, y) = A for a some constant A. This
is also a solution to Eq. (13.2). □

Example 13.6. Consider the ODE:

3y2 + 8x+ 4xy
dy

dx
= 0.

We have:

f(x, y) = 3y2 + 8x g(x, y) = 4xy.

Then:

1

g

[
∂f

∂y
− ∂g

∂x

]
=

1

4xy
(6y − 4y) =

1

2x
.

Setting p(x) = (2x)−1 we have:

µ(x) = exp

[ˆ
1

2x
dx

]
=

√
x.

This agrees with Example 13.3.

Remark 13.7. If this trick does not work, then there may still be an integrating function,
but it’s a non-trivial case and well outside the scope of the course.
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Other Applications of First Order ODEs





LESSON 14

1. Concentration Problems

Remark 14.1 (Single Compartment Model). A single compartment model is a model of the
time-varying amount of some substance that flows into and out of a single compartment.
This is illustrated in Fig. 14.1. The general model follows the rule:

Figure 14.1. In a single compartment model a quantity of interest flows into
and out of a compartment.

(14.1)
dQ

dt
= rQin

− rQout ,

where rQin
is the rate the quantity is flowing in and rQout is the rate the quantity is flowing

out.

Example 14.2. Consider a tank containing a solution with volume 1 kl. The solution was a
salt concentration of 35 g/l. Water with a salinity of 10 g/l is flowing into the tank at a rate
of 10 l/min. The fully mixed brine solution is flowing out at the same rate. We can model
the change in salinity (salt concentration) of the solution in the tank as a function of time.

Step 1 - Compute the volume as a function of time: We have:

V̇ = 10 l/min− 10 l/min = 0.

The units are in liters per minute. Therefore:

V (t) = V0 = 1kl = 1000 l.

Step 2 - Compute the mass of the salt as a function of time: Let m(t) be the
unknown mass of salt in the tank as a function of time. Using some dimensional analysis,
we know the salt is flowing in according to the expression:

rmin
= 10 l/min · 10 g/l = 100 g/min.
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The rate salt is leaving is harder to compute. The concentration in the tank m(t)/V (t) in
units g/l. So we have:

rmout = 10 l/min · m(t)

V (t)
=

10m(t)

1000
=

1

100
m(t).

Therefore we have:

ṁ = 100− 1

100
m.

The initial mass can be computed as:

m0 = 35 g/l · 1000 l = 35000 g = 35 kg.

We can solve this equation any number of ways but in grams, the mass function is then:

m(t) = 5000

[
2 + 5 exp

(
− t

100

)]
.

Step 3 - Compute the time-varying concentration: We know the concentration is
m(t)/V (t), so:

ρ(t) =
5000

[
2 + 5 exp

(
− t

100

)]
1000

= 5

[
2 + 5 exp

(
− t

100

)]
.

Example 14.3 (Time Varying Volume). Suppose we start with the same problem but now
the flow rate out is 8 l/min. We can follow the same steps but now V (t) is not a constant.

Step 1 - Compute the volume as a function of time: We have:

V̇ = 10 l/min− 8 l/min = 2.

The units are in liters per minute. Therefore:

V (t) = V0 + 2t = 1kl + 2t = 1000 + 2t.

Step 2 - Compute the mass of the salt as a function of time: As before we have:

rmin
= 100 g/min.

The rate salt is leaving is now different. As always, concentration in the tank m(t)/V (t) in
units g/l. So we have:

rmout = 8 · m(t)

V (t)
=

8m

1000 + 2t
=

4m

500 + t
.

Therefore we have:

ṁ = 100− 4m

500 + t
.

This we can rewrite as:

ṁ+
4

500 + t
m = 100.
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Using the integrating factor:

µ(t) = exp

(ˆ
4

500 + t
dt

)
= (t+ 500)4

Then our formula is:

m(t) =
1

(t+ 500)4

[ˆ
100(t+ 500)4 dt+ C

]
= 20(t+ 500) +

C

(t+ 500)4
.

We know from before that t0 = 0 and m(0) = 35000 (grams). So the constant C is the very
unwieldy:

C = 1, 562, 500, 000, 000, 000g ·min = 1.5625× 1015g ·min.

As before, an expression for salt concentration is: m(t)/V (t). We can plot the resulting
concentration in Fig. 14.2:

Figure 14.2. The concentration of salt decreases over time as a volume of
fluid increases and the less concentrated brine flows is introduced into the
system.

2. Newton’s Law of Cooling

Remark 14.4. Compared to mixing problems, Newton’s law of cooling is easy.

Definition 14.5 (Newton’s Law of Cooling-Simplified Form). Suppose a sample of substance
has time varying temperature u(t) and is placed in an environment with temperature uenv.
Then:

u̇ = k(uenv − u),

where k > 0 is the coefficient of heat transfer and depends on the substance.

Remark 14.6. The more sophisticated form of Newton’s law of cooling takes into account
the surface area through which heat is being transferred and is expressed in terms of watts
rather than degrees Kelvin (or celsius). The dynamics, however, are identical so for our
purposes the simplified form is sufficient. The next theorem should be clear.
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Theorem 14.7. Suppose a sample of substance has time varying temperature u(t) with
u(0) = u0 and is placed in an environment with temperature uenv and coefficient of heat
transfer k. Then:

u(t) = uenv + (u0 − uenv)e
−kt.

□

Derivation 14.8 (Newton’s Law of Cooling with Internal Heat). Suppose the sample we are
studying has an internal heating (or cooling) property. An example of this is a temperature
controlled building, but there could be an internal endothermic or exothermic reaction oc-
curring. In this case we can think of the net energy (heat) being transferred into the sample.
This is another single compartment model with the sample being treated as the compart-
ment and the energy as the substance being transferred. Furthermore, there is no reason
to assume the environmental temperature is constant. The resulting differential equation is
then:

u̇ = k(uenv(t)− u) + q(t),

where uenv(t) is the time-varying environmental temperature and q(t) is the time-varying
internal heat of the sample. It’s units must be in temperature per unit time, e.g. K/s. The
function q(t) is often called a forcing function.

This equation can be rewritten as:

u̇+ ku = kuenv(t) + q(t).

Consequently, we can solve it using the integrating factor methods we have already discussed.

Example 14.9. A sample is maintained in a laboratory at 0C and is generating heat with
a decaying forcing function q(t) = 100e−t meausred in degrees celsius per second. The
sample’s initial temperature is 100C and the coefficient of heat transfer is 1. We can find
the temperature of the sample by solving:

u̇+ u = 100e−t.

Set:

µ(t) = exp

[ˆ
dt

]
= exp(t).

Then:

u(t) =
1

exp(t)

(ˆ
100ete−t dt

)
= 100te−t + Ce−t

We know u(0) = 100, so C = 100. The solution is:

u(t) = (100 + 100t) e−t.

Using Theorem 14.7, we can compare this to the case when there is no forcing function.
Then the solution is:

ũ(t) = 100e−t.

The internal heating of the object slows the natural cooling process (as one would expect).
This is illustrated in the figure below.
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Figure 14.3. Newton’s law of cooling with and without forcing is shown.





LESSON 15

1. Circuits - Part 1

Definition 15.1 (Current). Current is the flow of electric charge through a medium (wire).
It is usually measured in amperes, which are coulombs per second. Thus, if q is the charge
in the medium, then q̇ is the current.

Definition 15.2 (Voltage). Voltage is a measure of the amount of energy per unit charge.
Specifically, it is the amount of work (in watts) that must be done per unit of charge to from
one location to another. It it measured in watts per coulomb or volts.

Figure 15.1. Voltage is a measure of work or energy per unit charge. Specif-
ically the work per coloumb needed to move a test charge between two points.

Definition 15.3 (Resistor). A resistor is an electrical device that resists the flow of current
when placed in a circuit. Resistance is measured in ohms, which is a relatively messy derived
unit.

Figure 15.2. A resistor is an electrical device that opposes current flow
thereby. Resistors cause voltages to decrease by converting some energy in
the charge to heat.
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Definition 15.4 (Capacitor). A capacitor is an electrical device composed of two metal
plates separated by a non-conducting material called a dialectric. A charged capacitor has
opposite signed charges built up on the opposing metal plates allowing the charged to be
stored. If the two plates are electrically connected, the charge imbalance will quickly come

Figure 15.3. A capacitor stores charge on opposite, non-touching metal
plates.

to equilibrium causing (sometimes) explosive effects. If a capacitor is charged with a battery
of voltage V , then the amount of charge Q stored is:

(15.1) Q = CV,

where C is a constant dependent on the capacitor (called the capacitor’s capacitance).

Definition 15.5 (Ohm’s Law). Ohm’s law is an empirical law relating voltage, resistance
and current. In particular, if V is the voltage in a circuit, Q̇ is the current and R is the
circuit resistance, then:

(15.2) V = RQ̇ = RI

Derivation 15.6. When the two plates of a capacitor are connected electrically through a
resistor, the charge drains slowly from the capacitor. Details of this derivation are taken
from [PM13].

Figure 15.4. A circuit with a capacitor and resistor slowly drains charge
away from the capacitor causing the voltage (energy) in the system drain way
as heat.



2. CIRCUITS - PART 2 87

We can analyze this situation. From Eq. (15.1) we have:

Q̇ = CV̇ .

Kirchoff’s loop law states that the sum of all currents inside a circuit must be equal to zero.
The two currents (for the resistor and capacitor) are:

I = Q̇ =
V

R
,

and

I = Q̇ = CV̇ .

Therefore:

CV̇ +
V

R
= 0

or:

V̇ = − V

RC
.

Consequently, the time-varying voltage in the circuit is:

V (t) = V0 exp

(
− t

RC

)
.

This makes sense. As the energy slowly drains out of the circuit, the voltage falls to zero
asymptotically.

2. Circuits - Part 2

Definition 15.7 (Inductor). An inductor is a coil of wire that creates a magnetic field
whenever a changing current (I) passes through it. Amazingly, the magnetic field induces
current that flows in the opposite direction. Specifically, the voltage (electromotive force) is
given by:

(15.3) V (t) = V0 − Lİ,

where V0 is a constant (initial) voltage and İ is the rate of change of current and L is the
inductance of the coil. This is an intrinsic property.

Derivation 15.8 (RL Circuit). Details of this derivation can be found in [PM13]. Suppose
we have an inductor and a resistor in a circuit. We know by combining Eqs. (15.2) and (15.3)
that:

V (t) = V0 − Lİ = IR,

since Q̇ = I. That is:

İ +
R

L
I = V0.

This equation can be easily solved to show that:

I(t) =
V0
R

[
1− exp

(
−R
L
t

)]
.

Here as t → ∞, the current approaches a fixed point V0/R asymptotically as the counter-
force of the inductor drops overtime (because the current slowly stops changing).



88 15

Figure 15.5. A circuit with an inductor and resistor allows the current to
asymptotically approach a level expected from a specific voltage (electromotive
force).

Remark 15.9. This derivation can be generalized by assuming V0 is actually a function
of time. The resulting ODE can be solved with an integrating factor. Also, we note we’re
being a little “fast-and-loose” with our use of voltage vs. electromotive force in the previous
derivation. For a more complete discussion, take a course in electromagnetism.
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Second Order ODEs





LESSON 16

1. Complex Numbers & Preliminaries

Remark 16.1. You will notice that none of the solutions to the first order ODE’s exhibited
any oscillations. In fact, except when they blew up, they were fairly boring. However, from
Example 2.15, where we solved the y′′ = −α2y, we know that solutions two second order
ODE’s can oscillate. Oscillations mean its time to introduce complex numbers.

Definition 16.2 (Imaginary and Complex Numbers). Let i =
√
−1. A complex number is

a number with form a+ bi for a, b ∈ R. A complex number a+ bi is pure imaginary if a = 0.
The set of complex numbers is denoted C.

Remark 16.3. Each complex number a+ bi can be visualized as a point (a, b) in the plane.
We have the notation Re(z) = a and Im(z) = b if z = a+ bi.

Definition 16.4 (Complex Conjugate). If z = a+bi then its complex conjugate is z̄ = a−bi.

Remark 16.5 (Operations). If a+ bi is a complex number and r ∈ R, then:

(16.1) r(a+ bi) = ra+ rbi

Complex numbers add and multiply by the following rules:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Let z = a + bi. Then zz̄ = a2 + b2, which is real. For complex number z, define |z| =
√
zz̄.

This makes sense it is the distance of the point (a, b) to the origin, thus generalizing the idea
of absolute value. Finally, if w, z ∈ C and z ̸= 0, we can define division:

w

z
=
wz̄

|z|2
.

Now the denominator is real and can be divided into numerator using Eq. (16.1).

Proposition 16.6. Consider the equation p(s) = as2 + bs+ c = 0.

(1) If b2 − 4ac > 0, then there are two real numbers r1 and r2 satisfying p(ri) = 0
(i = 1, 2).

(2) If b2 − 4ac = 0, then there are one real numbers r satisfying p(r) = 0.
(3) If b2 − 4ac < 0, then there is a complex number z such that p(z) = p(z̄) = 0.

□

Remark 16.7. The interesting part of the last proposition is that complex roots of p(x) com
in conjugate pairs. This is generally true of all polynomials and is a part of the fundamental
theorem of algebra, which we will not cover.
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2. Characteristic Equations

Remark 16.8. Recall we discussed linear operators in Definition 3.16. We will use them
now.

Derivation 16.9. Consider the second order differential equation:

(16.2) a
d2y

dx2
+ b

dy

dx
+ cy = 0.

We can write this as:

L(y) = 0,

with

L = a
d2

dx2
+ b

d

dx
+ c

Consider the action of L on eαx:

L (eαx) = a
d2

dx2
(eαx) + b

d

dx
(eαx) + ceαx =

aα2eαx + bαeαx + ceαx = (aα2 + bα + c)eαx.

Observe that if (as2+bs+c)eαx = 0 for all x, then we would require that α solves as2+bs+c =
0. Thus, we have derived a general solution Eq. (16.2). In light of Proposition 16.6, we now
have a few cases to consider because it is perfectly clear what this means when there are two
real roots. When there are two complex roots, this is less clear and when there is only one
real root, we expect another solution to be lurking around somewhere.

Definition 16.10 (Characteristic Equation). Given the second order differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

the characteristic equation is as2 + bs+ c = 0.

Theorem 16.11 (Two Real Roots). Consider the second order differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

If the characteristic equation as2 + bs + c = 0 has two distinct roots r1, r2 ∈ R, then the
general solution to the ODE is:

y(x) = C1e
r1x + C2e

r2x.

Proof. We know from Derivation 16.9 that both er1x and er2x must solve the ODE.
The operator defining this ODE is linear and therefore by Theorem 2.14 (superposition) it
follows that C1e

r1x + C2e
r2x also solves the ODE for arbitrary constants C1 and C2. □

Example 16.12. To solve the ODE:

y′′ + 3y′ + 2y = 0
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we solve x2 + 3x+ 2 = 0. Note x2 + 3x+ 2 = (x+ 1)(x+ 2) so there are two roots r1 = −1
and r2 = −2. The solution to the ODE is:

y(x) = C1e
−x + C2e

−2x.

If we were given y(0) = 2 and y′(0) = −3 then we could solve for the two unknown constants
of integration as:

C1 + C2 = 2

− C1 − 2C2 = −3

Then C1 = 1 = C2 and the specific solution is:

y(x) = e−x + e−2x.

3. The Case of Two Complex Roots

Remark 16.13. The next theorem would be proved in a complex analysis class. We’ll take
it on faith.

Lemma 16.14. The following Taylor series expansions about z = 0 are valid for all z ∈ C:

ez =
∞∑
n=0

zn

n!

sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!

cos(z) =
∞∑
n=0

(−1)n
z2n

(2n)!

□

Lemma 16.15 (Euler’s Theorem∗). Let z = a+ bi. Then:

ez = eaebi = ea (cos(b) + i sin(b)) .

□

Proof. It is sufficient to show ebi = cos(b) + i sin(b). Apply Lemma 16.14:

ebi = 1 + bi+
(bi)2

2
+

(bi)3

3!
+ · · · =

[
1 +

(bi)2

2
+ · · ·

]
︸ ︷︷ ︸

Even Powers

+

[
bi+

(bi)3

3!
+ · · ·

]
︸ ︷︷ ︸

Odd Powers

.

Recall i2n = (−1)n and i2n+1 = i(−1)n. The we have:

ebi =

(
1− b2

2
+ · · ·

)
︸ ︷︷ ︸

Even Powers

+ i

(
b− b3

3!
+ · · ·

)
︸ ︷︷ ︸

Odd Powers

=

∞∑
n=0

(−1)n
b2n

(2n)!
+ i

[
∞∑
n=0

(−1)n
b2n+1

(2n+ 1)!

]
= cos(b) + i sin(b).

□
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Derivation 16.16. Let z = a+bi and z̄ = a−bi be two conjugate roots of the characteristic
equation as2 + bs+ c = 0 corresponding to the ODE:

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

The immediate solution is y(x) = K1e
(a+bi)x + K2e

(a−bi)x, where K1 and K2 are now two
arbitrary complex constants. Let K1 = A+Bi and K2 = C +Di. Then we can write:

y(x) = (A+Bi)eax [cos(bx) + i sin(bx)] + (C +Di)eax [cos(−bx) + i sin(−bx)] =
(A + Bi)eax [cos(bx) + i sin(bx)] + (C +Di)eax [cos(bx)− i sin(bx)] ,

because cos(−x) = cos(x) and sin(−x) = − sin(x). This solution is not satisfying because
we want a real solution for our problem assuming we have real initial conditions. We can fix
this by grouping the real and imaginary terms together. We have:

y(x) = Aeax cos(bx) + Ceax cos(bx)−Beax sin(bx) +Deax sin(bx)+

i [Aeax sin(bx)− Ceax sin(bx) +Beax cos(bx) +Deax cos(bx)] =

eax [(A+ C) cos(bx) + (D −B) sin(bx)] + ieax [(A− C) sin(bx) + (B +D) cos(bx)]

Remember A, B, C, and D are arbitrary so set A = C and B = −D and the imaginary part
goes to zero leaving a solution:

y(x) = 2Aeax cos(bx) + 2Deax sin(bx) = eax [C1 cos(bx) + C2 sin(bx)] .

This is the general solution when there are two complex roots to the characteristic equation.

Theorem 16.17 (Two Complex Roots). Consider the second order differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

If the characteristic equation as2 + bs + c = 0 has two complex conjugate roots a + bi and
a− bi with a, b ∈ R, then the general solution to the ODE is:

y(x) = eax [C1 cos(bx) + C2 sin(bx)] .

□

Example 16.18. Consider the ODE:

y′′ − 2y′ + 5y = 0.

The characteristic equation is: x2 − 2x+ 5 = 0 and it has roots:

x =
2±

√
4− 20

2
= 1±

√
−16

2
= 1± 2i.

Then we have the solution:

y(x) = ex [C1 cos(2x) + C2 sin(2x)] .

If we are given the initial data y(0) = 1 and y′(0) = −1, then we would have:

y(0) = e0 [C1 cos(0) + C2 sin(0)] = C1 = 1

and

y′(0) = e0 [cos(0) + C2 sin(0)] + e0 [−2 sin(0) + 2C2 cos(0)] = 1 + 2C2 = −1.
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Therefore C2 = −1. The specific solution:

y(x) = ex [cos(2x)− sin(2x)] .
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1. Repeated Real Roots

Derivation 17.1. Consider the second order differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

For simplicity, assume a = 1. This is a safe assumption since we can always divide the given
equation by a to obtain the equivalent:

d2y

dx2
+
b

a

dy

dx
+
c

a
= 0.

If the characteristic equation can be factored as:

s2 + bs+ c = (s− r1)(s− r2) = 0,

then we have:

b = −(r1 + r2)

c = r1r2.

We assume r1, r2 ∈ R. That means we can rewrite the ODE as:

d2y

dx2
− (r1 + r2)

dy

dx
+ r1r2y = 0.

Expanding this we have:(
d2y

dx2
− r2

dy

dx

)
− r1

dy

dx
+ r1r2y =

(
d2y

dx2
− r2

dy

dx

)
− r1

(
dy

dx
− r2y

)
= 0.

Let:

(17.1) v =
dy

dx
− r2y.

Then:

dv

dx
=
d2y

dx2
− r2

dy

dx
.

So we can rewrite the original ODE as:

dv

dx
− r1v = 0.

Thus:

v(x) = C1 exp(r1x).
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Here C1 is just a constant of integration. Now we can use Eq. (17.1) to see:

dy

dx
− r2y = C1 exp(r1x).

This can be solved with the integrating factor:

µ(x) = exp(−r2x),

where we see:

y(x) =
1

exp(−r2x)

(ˆ
C1 exp(r1x) exp(−r2x) dx

)
= er2x

(ˆ
C1 exp[(r1 − r2)x] dx

)
.

If r1 ̸= r2, we get the result in Theorem 16.11, which you can check. If r1 = r2 = r we get:

y(x) = erx
(ˆ

C1 dx

)
= erx (C1x+ C2) = C1xe

rx + C2e
rx.

We have proved a theorem.

Theorem 17.2 (Two Repeated Roots). Consider the second order differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

If the characteristic equation as2 + bs + c = 0 has a single root r ∈ R, then the general
solution to the ODE is:

y(x) = C1xe
rx + C2e

rx.

Example 17.3. Consider the ODE:

y′′ + 2y′ + y = 0.

The characteristic equation is s2 + 2s+ 1 = (s+ 1)2. Therefore, r = 1 is the only root. The
solution to the ODE is therefore:

y(x) = C1xe
−x + C2e

−x.

If we have y(0) = 1 and y′(0) = 2 then:

y(0) = C2 = 1

and

y′(x) = C1e
−x − C1xe

−x − C2e
−x,

so:

y′(0) = C1 − C2 = C1 − 1 = 2.

Therefore C1 = 3 and the specific solution is:

y(x) = 3xe−x + e−x.
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2. Existence, Uniqueness and the Wronskian

Remark 17.4. Notice in all our solutions to second order linear ODE’s, we have found two
solutions with two arbitrary constants that have been combined to form a single general
solution. The next theorem quantifies when the more general linear second order system has
a solution.

Theorem 17.5. Consider the linear second order initial value problem:

y′′ + p(x)y′ + q(x)y = f(x) y(x0) = y0, y
′(x0) = y1.

If p, q and g are continuous on the interval I ⊆ R with x0 ∈ I, then there exists a unique
solution φ(x) satisfying the initial value problem. □

Derivation 17.6 (Wronskian). Consider the ODE of form:

y′′ + p(x)y′ + q(x)y = 0

This ODE is linear and so we know that if we have two solutions φ1(x) and φ2(x), we can
combine them to form an infinite family of solutions:

y(x) = C1y1(x) + C2y2(x).

We’ve already seen this several times. For example in the ODE from Example 16.12:

y′′ + 3y′ + 2y = 0

has two solutions φ1(x) = e−x and φ2(x) = e−2x, which we combined to form y(x) =
C1e

−x + C2e
−2x. We now derive a condition to ensure the IVP problem:

y′′ + p(x)y′ + q(x)y = 0 y(x0) = y0, y
′(x0) = y1.

has a solution of form C1φ1(x) + C2φ2(x). That is, we are going to ensure we can solve for
explicit values for C1 and C2. We require:

C1φ1(x0) + C2φ2(x0) = y0

C1φ
′
1(x0) + C2φ

′
2(x0) = y1

If we solve for C1 and C2 we see:

C1 =
y0φ

′
2 (x0)− y1φ2 (x0)

φ1 (x0)φ′
2 (x0)− φ2 (x0)φ′

1 (x0)

C2 =
y1φ1 (x0)− y0φ

′
1 (x0)

φ1 (x0)φ′
2 (x0)− φ2 (x0)φ′

1 (x0)

Notice the term:

φ1 (x0)φ
′
2 (x0)− φ2 (x0)φ

′
1 (x0)

appears in both C1 and C2. It is both necessary and sufficient that this term not be zero to
ensure the IVP has a solution.

Definition 17.7 (Wronskian). Let φ1(x) and φ2(x) be two functions. The Wronskian of
the function is:

W (φ1, φ2) = φ1φ
′
2 − φ2φ

′
1,

which you can also write as:

W (φ1(x), φ2(x)) = φ1(x)φ
′
2(x)− φ2(x)φ

′
1(x),
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if you prefer.

Theorem 17.8. Given two solutions φ1(x) and φ2(x) to the IVP:

y′′ + p(x)y′ + q(x)y = 0 y(x0) = y0, y
′(x0) = y1.

there are constant C1 and C2 so that C1φ1(x)+C2φ2(x) solves the IVP if and only ifW [φ1, φ2]
evaluated at x0 is not equal to zero. □

Example 17.9. Notice in our problem:

y′′ + 3y′ + 2y = 0

we have φ1(x) = e−x and φ2(x) = e−2x. The Wronskian is:

e−x
(
−2e−2x

)
− e−2x

(
−e−x

)
= −2e−3x + e−3x = −e−3x.

This function is never zero, so no matter where the initial conditions might occur, the IVP
with ODE y′′ + 3y′ + 2y = 0 always has a solution.

Derivation 17.10. Notice:

W [φ1, φ2] = 0 ⇐⇒ d

dx

[
φ1(x)

φ2(x)

]
=
φ′
1φ2 − φ′

2φ1

φ2
2

= 0,

by the quotient rule. But if:

d

dx

[
φ1(x)

φ2(x)

]
= 0,

then:
φ1(x)

φ2(x)
= C,

for some constant C. Thus the Wronskian tells us whether two functions are constant
multiples of each other.

Example 17.11. If φ1(x) = ex and φ2(x) = 2ex, then the Wronskian is:

ex (2ex)− 2ex (ex) = 0.

Definition 17.12 (Linear Independence). A set of functions φ1, . . . , φn is linearly indepen-
dent if for a set of constants α1, . . . , αn we have

α1φ1(x) + · · ·αnφn(x) = 0,

just in case α1 = α2 = · · · = αn = 0.

Remark 17.13. In a more general sense, the Wronskian tells us whether two functions are
linearly independent (Wronskian is not zero) or linearly dependent (Wronskian is zero). As
we will see, only linearly independent solutions can be combined into a general solution.
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1. More on the Wronskisan

Theorem 18.1. Consider the ODE:

y′′ + p(x)y′ + q(x)y = 0

and let y1(x) and y2(x) be two solutions. The solution C1y1(x)+C2y2(x) is the general solution
if and only if there is some x0 where W [y1(x0), y2(x0)] ̸= 0.

Proof. The φ(x) be a specific solution. Suppose at x0, W [y1(x0), y2(x0)] ̸= 0. Consider
the IVP:

(18.1) y′′ + p(x)y′ + q(x)y = 0, y(x0) = y0 = φ(x0), y
′(x0) = y1 = φ′(x0).

Then by Theorem 17.8, there is C1 and C2 such that C1y1(x) +C2y2(x) solves this IVP. We
know that φ(x) must also be a solution to this IVP. Applying Theorem 17.5, the solution to
this IVP must be unique therefore:

φ(x) = C1y1(x) + C2y2(x).

Since we choose φ(x) to be an arbitrary specific solution, it follows that any solution can be
expressed as C1y1(x) + C2y2(x).

To prove the converse, assume thatW [y1(x0), y2(x0)] = 0 for all x0. Then for any specific
solution φ(x), we can find no C1 and C2 so that C1y1(x) + C2y2(x) solves Eq. (18.1), yet
clearly φ(x) solves this problem. Therefore, φ(x) does not have form C1y1(x) +C2y2(x) and
this is not a general solution. □

Remark 18.2. For those who have taken matrices (or some linear algebra) this result states
that for second order linear ODE’s, the solution space is two dimensional made up of a basis
of functions y1 and y2.

Theorem 18.3 (Abel’s Theorem∗). Consider the following ODE:

y′′ + p(x)y′ + q(x)y = 0.

The Wronskian is given by:

W = A exp

(
−
ˆ
p(x) dx

)
,

for some constant A. In particular, the Wronskian is zero if and only if this constant is zero.

Proof. Let φ1(x) and φ2(x) be two solutions. Then:

φ′′
1 + p(x)φ′

1 + q(x)φ1 = 0

φ′′
2 + p(x)φ′

2 + q(x)φ2 = 0.
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Multiply the first equation by −φ2 and the second by φ1 to obtain:

− φ2φ
′′
1 − p(x)φ2φ

′
1 − q(x)φ2φ1 = 0

φ1φ
′′
2 + p(x)φ1φ

′
2 + q(x)φ2φ2 = 0.

Add these two equations to see:

(18.2) φ1φ
′′
2 − φ2φ

′′
1 + (φ1φ

′
2 − φ2φ

′
1) p(x) = φ1φ

′′
2 − φ2φ

′′
1 +Wp(x) = 0.

Now note:
d

dx
W (φ1, φ2) =

d

dx
(φ1φ

′
2 − φ2φ

′
1) = φ1φ

′′
2 − φ2φ

′′
1.

So Eq. (18.2) is:

W ′ + p(x)W = 0.

This is a separable ODE with a solution:

W = A exp

(
−
ˆ
p(x) dx

)
.

Moreover, since exp[p(x)] is always positive, it follows thatW is zero if and only if A = 0. □

Remark 18.4. In particular, the constant A from Theorem 18.3 depends entirely on what
φ1 and φ2 are chosen.

Example 18.5. Consider the ODE from Example 17.9:

y′′ + 3y′ + 2y = 0

where we have φ1(x) = e−x and φ2(x) = e−2x. Here p(x) = 3, s we expect the Wronskian to
be:

W = A exp

(
−
ˆ

3 dx

)
= A exp(−3x).

This agrees with our explicit computation of the Wronskian from Example 17.9, where we
had W = e−3x. Thus for this choice of functions we can conclude that A = 1.

2. Harmonic Oscillators and Conservation of Energy

Remark 18.6. Material in this section can be found in even greater detail in [Mar13].

Derivation 18.7 (Harmonic Oscillator). Consider a mass on a spring resting on a frictionless
surface in a vacuum. The only force on the mass is caused by the spring when it is out of

Figure 18.1. A mass on a spring on a frictionless surface in a vacuum will
experience forces governed only by Hook’s law.



2. HARMONIC OSCILLATORS AND CONSERVATION OF ENERGY 103

equilibrium (stretched or compressed). Recall Hook’s law states that the force from a spring
is opposite to its displacement from equilibrium. Written as an equation we have:

F = −kx,

where x is the displacement distance from the spring’s equilibrium (which would be x = 0).
Ignoring the mass of the spring we can write Newton’s law as:

mẍ = −kx,

where m is the mass of the block in Fig. 18.1 and x is the position of the block determining
how far the spring is stretched or compressed. This ODE is then:

ẍ+
k

m
x = 0.

This is called the Harmonic Oscillator equation. The characteristic equation for this ODE
is:

s2 +
k

m
s = 0,

which has solutions: The characteristic equation for this ODE is:

s2 +
k

m
= 0,

s = ±i
√
k

m
.

In this case, we know that the general solution is:

x(t) = C1 cos

(
t

√
k

m

)
+ C2 sin

(
t

√
k

m

)
.

If x(0) = x0 and ẋ(0) = v0 (the initial velocity), then we can solve:

x0 = x(0) = C1 cos(0) = C1.

We also know:

v0 = ẋ(0) =

√
k

m
· C2 cos(0) =⇒ C2 =

v0√
k/m

.

For simplicity, let ω =
√
k/m. This is the angular frequency of the oscillation. From the

angle sum trigonometric identities, we know:

A cos(ωt− ϕ) = A cos(ϕ) cos(ωt) + A sin(ϕ) sin(ωt).

Then we can associate:

A cos(ϕ) = x0

A sin(ϕ) =
v0
ω

Then:

A2 cos2(ϕ) + A2 sin2(ϕ) = A2 = x20 +
v20
ω2
.
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We conclude that:

A =

√
x20 + (v0/ω)

2 =
√
C2

1 + C2
2 .

Likewise:

A sin(ϕ)

A cos(ϕ)
= tan(ϕ) =

v0
ωx0

=
C2

C1

.

The constant ϕ is called the phase of the oscillation and we can express the solution of the
ODE as:

x(t) = A cos(ωt− ϕ)

Notice:

ẋ = −Aω sin(ωt− ϕ).

We can compute the energy of the system. The kinetic energy is K = 1
2
mv2. That is:

K =
1

2
m [−Aω sin(ωt− ϕ)]2 =

Amω2

2
sin2(ωt− ϕ).

Meanwhile by Hook’s law (again), the potential energy is U = 1
2
kx2. That is:

U =
1

2
k [A cos(ωt− ϕ)]2 =

A2k

2
cos2(ωt− ϕ).

Recall: ω2 = k/m

Amω2

2
=
Ak2

2
.

At last we can compute:

K + U =
Amω2

2
sin2(ωt− ϕ) +

A2k

2
cos2(ωt− ϕ) =

A2k

2
sin2(ωt − ϕ) +

A2k

2
cos2(ωt − ϕ) =

A2k

2
.

This is a constant and shows that in the Harmonic Oscillator, total energy is conserved.

Remark 18.8. This is not an accident. We show this is a result of a more general property
of second order ODE’s.

Theorem 18.9 (Energy Theorem). Consider the second order (autonomous) ODE:

(18.3) ẍ = f(x).

Let:

F (x) =

ˆ
f(x) dx

be the anti-derivative of f(x) with no constant of integration and let:

E(t) = 1

2
ẋ2(t)− F [x(t)]

be the energy of the system modeled by the ODE. Then E(t) is constant. That is ODE’s with
form Eq. (18.3) exhibit conservation of energy.
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Proof. To show E(t) is constant, we take it’s derivative:

dE
dt

= ẋẍ− F ′[x(t)]ẋ = ẋ [ẍ− f(x)] = 0,

since ẍ− f(x) = 0 by Eq. (18.3). Therefore E ′(t) = 0 and E(t) must be a constant. □

Remark 18.10. In the harmonic oscillator we had:

ẍ = f(x) = − k

m
x.

Thus: F (x) = − 1
2m
kx2 and so:

E =
1

2
v2 −

(
− 1

2m
kx2
)
=

1

2
v2 +

1

2m
kx2,

where v = ẋ. This is constant by the theorem and so is the mass m. Then:

E = mE =
1

2
mv2 +

1

2
kx2

is also a constant and we have recovered the ordinary kinetic and potential energy of the
mass-spring system along with the principle of energy conservation from mechanics.





LESSON 19

1. Damped Oscillation

Example 19.1 (Damped Oscillator). Starting from our mass on a spring, assume the mass
is surrounded by a fluid (air) that resists its motion. In this case, there is still no surface

friction. The fluid (air) resistance we studied in Example 4.9 was more appropriate for fast
moving bodies. For slow moving bodies (like our mass on a spring) we will use the stokes
force, which is proportional to ẏ (as opposed to ẏ2). Summing up the forces we have:

mÿ = −bẏ − ky,

or:

mÿ + bẏ + ky = 0.

This second order ODE has characteristic polynomial:

ms2 + bs+ k = 0,

with solutions:

r1, r2 =
−b±

√
b2 − 4mk

2m
.

There are now three possibilities for the discriminant ∆ = b2 − 4mk.

Overdamped Motion: When b2 − 4mk > 0, this implies r1 and r2 are real. Moreover,
both roots must be negative since −b >

√
b2 − 4mk, since m, k > 0. The solution is:

y(t) = C1e
r1t + C2e

r2t

From this, we conclude that limt→∞ y(t) = 0. That is, the damping effect of the fluid stops
the motion in the long run. Taking the derivative we have:

ẏ = r1C1e
r1t + r2C2e

r2t

If we factor this expression, we have:

ẏ = er1t
(
r1C1 + r2C2e

(r1−r2)t
)
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If we set this equal to zero (to find a local maximum) we see that if the derivative is zero
then:

C1r1 + r2C2e
(r1−r2)t = 0,

which has only one solution:

t∗ =
1

r1 − r2
log

(
−r1C1

r2C2

)
.

We conclude that if t∗ > 0, there must be one maximum or one minimum and no oscillations.
This is called overdamped motion. An example of overdamped motion is shown in Fig. 19.1
with the equation ÿ + 4y′ + y = 0.

Figure 19.1. The overdamped oscillator slowly returns to the equilibrium
position y = 0.

Underdamped Motion: When b2 − 4mk < 0, this implies r1 and r2 are complex. We can
write:

r1, r2 =
−b
2m

± i

√
4mk − b2

2m
.

Let:

α =
b

2m

ω =

√
4mk − b2

2m
.

We know α > 0 and the roots are r1, r2 = −α± iω and we know the solution is:

y(t) = e−αt [C1 cos(ωt) + C2 sin(ωt)] .

Just as in the case of the harmonic oscillator we can write this as:

y(t) = e−αt [A cos(ωt− ϕ)] ,

with A =
√
C2

1 + C2
2 and tan(ϕ) = C2/C1. We see that limt→∞ = 0 because limt→∞ e−αt = 0

and the cosine term is bounded between −1 and 1. Thus, process exhibits exponentially
damped oscillation. This motion is called underdamped because there is not enough damping
to present oscillation unlike in the overdamped case. An example of underdamped motion is
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shown in Fig. 19.2 with the equation ÿ+ 1
2
y′+y = 0. We also show the exponential envelope

controlling the decay. These are computed as yenv(t) = Ae−αt.

Figure 19.2. The underdamped oscillator converges to the equilibrium point
y = 0 while continuing to oscillate.

Critically Damped Motion: When b2 − 4mk = 0, this implies r1 = r2 = r = −b/(2m)
and so there is one real negative root and the solution is:

y(t) = C1e
− b
2m

t + C2te
− b
2m

t = (C1 + C2t)e
− b
2m

t.

Then:

lim
t→∞

y(t) = lim
t→∞

C1 + C2t

exp
(

b
2m
t
) = 0,

since exponential functions dominate linear functions. (Alternatively, you can use L’Hospital’s
Rule on this limit.) Likewise:

ẏ =

[
C2 −

b

2m
(C1 + C2t)

]
exp

(
− b

2m
t
)
.

As before, this function has one root at:

t∗ =
bC1 − 2mC2

bC2

.

Therefore there is one maximum or minimum at most and no oscillations. An example of
critically damped motion is shown in Fig. 19.3 with the equation ÿ+2y′+ y = 0. Notice the
convergence to the equilibrium y(t) = 0 is faster than in the overdamped case because the
fluid is less resistive to the motion of the mass.

2. Circuits - Part 3

Example 19.2 (RLC Circuits∗). Consider a circuit consisting of a battery, a capacitor, an
inductor and a resistor in series. Recall from Ohm’s law (Eq. (15.2)) we have:

VR = RI.

The equation for capacitance (Eq. (15.1)) tell us:

VC =
Q

C
.
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Figure 19.3. The critically damped oscillator returns to the equilibrium
without oscillation and does so more quickly than in the overdamped case.

Figure 19.4. An RLC circuit consists of a capacitor, inductor and resistor
in series with a battery.

Lastly, we recall from the inductance law that:

VL = V0 − Lİ.

We know that the total voltage in the circuit must be V = VL + VR + VC . Combining the
voltages we know:

V0 = Lİ +RI +
Q

C
Then differentiating this expression with respect to t (which removes Q) yields:

0 = LÏ +Rİ +
1

C

dQ

dt
= LÏ +RI +

1

C
I,

or

Ï +
R

L
İ +

1

LC

dQ

dt
= 0.

When:

∆ =

(
R

L

)2

− 4

LC
< 0,

the current oscillates (in direction) in the circuit and this is the electrical analog of a mass
on a spring in a viscous fluid with the resistor playing the role of the fluid, the capacitor
playing the role of the mass and the inductor playing the role of the spring. The oscillating
current is called alternating current. More details on this example can be found in [PM13].
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1. Method of Undetermined Coefficients - Polynomial Forcing Functions

Lemma 20.1. Suppose that φ1(x) solves y
′′+ay′+by = q1(x) and φ2(x) solves y

′′+ay′+by =
q2(x). Then K1φ1(x) +K2φ2(x) solves y

′′ + ay′ + by = K1q1(x) +K2q2(x).

Proof. Let φ(x) = K1φ1(x) +K2φ2(x). Direct computation shows:

d2φ

dx2
+ a

dφ

dx
+ bφ =

K1 (φ
′′
1 + aφ′

1 + bφ1) +K2 (φ
′′
2 + aφ′

2 + bφ2) = K1q1(x) +K2q2(x)

□

Lemma 20.2. Suppose φ(x) solves y′′ + ay′ + by = 0 and ψ(x) solves y′′ + ay′ + by = q(x).
Then φ(x) + ψ(x) also solves y′′ + ay′ + by = q(x).

Proof. We can verify this by noting:

d2φ

dx2
= −adφ

dx
− bφ

d2ψ

dx2
= −adψ

dx
− bψ + q(x).

Adding the two equations and factoring yields:

d2

dx2
(φ+ ψ) = −a d

dx
(φ+ ψ)− b (φ+ ψ) + q(x).

Therefore:

d2

dx2
(φ+ ψ) + a

d

dx
(φ+ ψ) + b (φ+ ψ) = q(x).

□

Remark 20.3. The previous two lemmas tell us two things:

(1) If we have a non-homogeneous equation of the form:

y′′ + ay′ + by = q1(x) + q2(x),

we can solve two simpler non-homogeneous equations:

y′′ + ay′ + by = q1(x)

y′′ + ay′ + by = q2(x)

and then add the solutions together.
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(2) General solutions of a non-homogeneous equation y′′ + ay′ + by = q(x) will have
form y(x) = φ(x) + ψ(x), where φ(x) is the general solution to the homogeneous
equation and ψ(x) is a particular to the non-homogeneous equation.

Remark 20.4. General theorems on the method of undetermined coefficients will be stated
but not proved. The proofs – frankly – are boring. They can be found in [BC98, NSS11,
BDM21, AD12]. The proofs are just generalizations of the examples we will use to build
up the technique.

Example 20.5. Consider the ODE:

y′′ + 3y′ + 2y = x2.

We don’t have an idea of how to solve a problem like this, but we can derive a method. Let

L =
d2

dx2
+ 3

d

dx
+ 2.

Our problem is just:

L(y) = x2.

Notice the following fact:

L
(
ax2 + bx+ c

)
= 2ax2 + (6a+ 2b)x+ (2a+ 3b+ 2c).

Notice we applied L to a degree two polynomial and the result was a degree two polynomial.
This is useful since we can attempt to find values for a, b and c so that:

2ax2 + (6a+ 2b)x+ (2a+ 3b+ 2c) = x2,

This means in particular:

2a = 1

6a+ 2b = 0

2a+ 3b+ 2c = 0.

Notice this system of equations has a triangular structure, which implies it must have a
solution. To see this note, the value of a is determined, the value of b is determined from the
value of a and the value of c is determined from the values of a and b. We conclude that:

a = 1
2

b = −3
2

c = 7
4

Thus, the specific solution to this problem is:

ψ(x) = 1
2
x2 − 3

2
x+ 7

4
.

For the homogeneous equation L(y) = 0, we know the characteristic equation is:

s2 + 3s+ 2 = (s+ 1)(s+ 2) = 0.

This implies the general solution to the homogeneous equation is:

φ(x) = C1e
−x + C2e

−2x.

We deduce the solution to the problem is then:

y(x) = C1e
−x + C2e

−2x + 1
2
x2 − 3

2
x+ 7

4
.
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We can generalize two results from this example.

Lemma 20.6. Define the linear operator:

L =
d2

dx2
+ α

d

dx
+ β.

If P (x) is a degree n polynomial with

P (x) = anx
n + an−1x

n−1 + · · ·+ a0,

then L[P (x)] is a degree n polynomial with:

L[P (x)] = βanx
n + (βan−1 + αnan)x

n−1 + · · · .
Thus for any constraint of the form

L[P (x)] = xn,

there is a unique solution with an = 1
β
and ak determined solely by the values ak+1, . . . , an.

□

Theorem 20.7. The non-homogeneous equation:

y′′ + ay′ + by = xn

has specific solution with form:

ψ(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where the coefficients can be determined from the result in Lemma 20.6. □

Remark 20.8. This method of solving a non-homogeneous equation is called the method of
undetermined coefficients. It can be generalized further.

2. Method of Undetermined Coefficients - Polynomial-Exponential Forcing
Functions - Part 1

Example 20.9. Consider the ODE:

y′′ + 3y′ + 2y = x2ex.

Again let:

L =
d2

dx2
+ 3

d

dx
+ 2.

Notice that:

L
[(
ax2 + bx+ c

)
ex
]
=
[
6ax2 + (10a+ 6b)x+ (2a+ 5b+ 6c)

]
ex.

Here the multiple ex comes from the fact that it appears on the right-hand-side of the ODE.
Just as before we applied L to a degree two polynomial multiplied by ex and the result was
a degree two polynomial multiplied by ex. As before, we can equate the coefficients on the
desired right-hand-side x2ex with the coefficients on the output to see we need:

6a = 1

10a+ 6b = 0

2a+ 5b+ 6c = 0.
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Again this system of equations is triangular and so we know there must be a unique solution.

a = 1
6

b = −5
18

c = 19
108

The solution to the ODE is then:

y(x) = C1e
−x + C2e

−2x + 1
6
x2 − 5

18
x+ 19

108
.

Remark 20.10. We see in the next example that we cannot immediately generalize this
result without observing a second possibility.
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1. Method of Undetermined Coefficients - Polynomial-Exponential Forcing
Functions - Part 2

Example 21.1. Consider the ODE:

y′′ + 3y′ + 2y = x2e−x.

Again let:

L =
d2

dx2
+ 3

d

dx
+ 2.

In the last example we assumed that:

ψ(x) =
(
ax2 + bx+ c

)
e−x

Again, the multiple e−x comes from the right-hand-side. This time however, when we apply
the linear operator we see:

L
[(
ax2 + bx+ c

)
e−x
]
= (2a+ b+ 2ax)e−x.

Somehow, we have lost all the x2 terms, which we need in order to find a specific solution
to the ODE because the right-hand-side of the ODE is x2e−x.

Lemma 21.2. Suppose:

L =
d2

dx2
+ a

d

dx
+ b.

and let h(x) be a function of x. Then:

L [eαxh(x)] = L(eαx)h(x) + (2α + a) eαxh′(x) + eαxh′′(x) = eαxL̃[h(x)],

where:

(21.1) L̃ =
d2

dx2
+ (2α + a)

d

dx
+ (α2 + aα + b).

is a second operator.

Remark 21.3. Before we do the proof, notice that if h(x) is a polynomial of degree n and
eαx is a solution to the homogeneous equation L(y) = 0, then we see the term:

L(eαx)h(x) = 0.

In particular, this means that the polynomial L̃[h(x)] does not have degree n. This is what
we just observed in Example 21.1.
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Proof of Lemma 21.2. Applying L to eαxh(x) we have:

d2

dx2
[eαxh(x)] = α2eαxh(x) + 2αeαxh′(x) + eαxh′′(x)

a
d

dx
[eαxh(x)] = aαeαxh(x) + aeαxh′(x)

Then:

(21.2) L [eαxh(x)] =
(
α2eαx + aαeαx + beαx

)
h(x) + (2αeαx + aeαx)h′(x) + eαxh′′(x).

Computation shows that:

L (eαx) = α2eαx + aαeαx + beαx.

Therefore:

L [eαxh(x)] = L(eαx)h(x) + (2α + a) eαxh′(x) + eαxh′′(x).

Factoring Eq. (21.2) differently yields:

L [eαxh(x)] =
[
h′′(x) + (2α + a)h′(x) +

(
α2 + aα + b

)]
eαx,

which can be written as:

L [eαxh(x)] = eαxL̃[h(x)],

where L̃ is defined in Eq. (21.1). □

Corollary 21.4. Suppose that eαx solves L(y) = 0 and α is a repeated root. Then

L [eαxh(x)] = h′′(x)eαx.

Proof. Recall from Derivation 17.1 that we can write the operator L as

d2

dx2
− (r1 + r2)

d

dx
+ r1r2y = 0,

where r1 and r2 are the roots of the characteristic polynomial of the operator L. We assume
that r1 = r2 = r and using the definition of the operator L from the theorem:

L =
d2

dx2
+ a

d

dx
+ b,

we see:

a = −(r1 + r2) = −2r = −2α.

Because we assume α is the root of the characteristic polynomial. Therefore, from the
theorem we have:

L [eαxh(x)] =
[
h′′(x) + (2α− 2α)h′(x) +

(
α2 + aα + b

)]
eαx.

The characteristic polynomial is: s2+ as+ b and therefore α2+ aα+ b = 0 and we conclude:

L [eαxh(x)] = h′′(x)eαx.

□
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Example 21.5. We now reconsider the ODE:

y′′ + 3y′ + 2y = x2e−x.

Again:

L =
d2

dx
+ 3

d

dx
+ 2.

We can see that e−x is a solution to y′′ + 3y′ + 2y = 0. If h(x) is a degree n polynomial,
we know that: L[h(x)e−x] = k(x)e−x, where k(x) is a degree n − 1 polynomial. Therefore,
we need h(x) to be a degree 3 polynomial in order to ensure k(x) has degree 2 and we can
apply the approach method of undetermined coefficients. Therefore consider:

L
[(
ax3 + bx2 + cx+ d

)
e−x
]
=
[
3ax2 + (6a+ 2b)x+ (2b+ c)

]
e−x.

First, notice that d has vanished on the right-hand-side. Therefore we are free to set d = 0.
We can tell this will always be the case using Lemma 21.2 in which only h′(x) is retained.

We can now construct the equations:

3a = 1

6a+ 2b = 0

2b+ c = 0

If we solve these equation, we can now derive the general solution to the ODE as:

y(x) = C1e
−x + C2e

−2x +
(
1
3
x3 − x2 + 2x

)
e−x =

(
1
3
x2 − x+ 2

)
xe−x.

Example 21.6. Consider now the ODE:

y′′ + 2y′ + y = x2e−x.

We can see that e−x is a solution to y′′ + 2y′ + y = 0 and moreover, −1 is a repeated root
of the characteristic equation s2 + 2s + 1 = 0. If h(x) is a degree n polynomial, we know
that: L[h(x)e−x] = k(x)e−x, where k(x) is a degree n − 2 polynomial. Therefore, we need
h(x) to be a degree 4 polynomial in order to ensure k(x) has degree 2 and we can apply the
approach method of undetermined coefficients. Therefore consider:

L
[(
ax4 + bx3 + cx2 + dx+ f

)
e−x
]
=
(
12ax2 + 6bx+ 2c

)
e−x.

Notice that dx and f have vanished on the right-hand-side. Therefore we are free to set
d = 0 and f = 0. We can tell this will always be the case using Corollary 21.4 in which only
h′′(x) is retained.

We can now construct the equations:

12a = 1

6b = 0

2c = 0

If we solve these equation, we can now derive the general solution to the ODE as:

y(x) = C1e
−x + C2e

−2x + 1
12
x4e−x.

Remark 21.7. Using these examples and lemmas, we can state a theorem.



118 21

Theorem 21.8. Consider the ODE:

y′′ + ay′ + by = eαxxn.

The specific solution has form:

ψ(x) = xs
(
anx

n + an−1x
n−1 + · · ·+ a0

)
eαx,

where s is the number of times α appears as a root in the characteristic polynomial of the
corresponding homogeneous ODE. □
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1. Method of Undetermined Coefficients - Polynomial-Exponential-Sinusoidal
Forcing Functions

Example 22.1. Consider the ODE:

y′′ + 3y′ + 2y = sin(2x).

Again:

L =
d2

dx2
+ 3

d

dx
+ 2.

Notice that if we apply L to sin(2x) we will obtain terms with cos(2x). Therefore we
investigate:

L [a cos(2x) + b sin(2x)] = (6b− 2a) cos(2x) + (−6a− 2b) sin(2x)

From this we derive the two equation:

6b− 2a = 0

−2b− 6a = 1

Solving we have a = − 3
20

and b = − 1
20
. Using this we can deduce that:

y(x) = C1e
−x + C2e

−2x − 3

20
cos(2x)− 1

20
sin(2x)

Example 22.2. Consider the ODE:

y′′ + 2y′ + 2y = e−x cos(x).

Here:

L =
d2

dx2
+ 2

d

dx
+ 2.

We note first that the roots of the characteristic polynomial s2 +2s+2 = 0 are: s = −1± i.
This implies that:[

C1e
−x cos(x) + C2e

−x sin(x)
]
e−x

is a solution to the homogeneous y′′ + 2y′ + 2y = 0. This means that if we try the solution:
ψ(x) = [A cos(x) +B sin(x)] e−x we see L[ψ(x)] = 0, which is not very useful. We might
have expected this. Notice the ODE can be written as:

y′′ + 2y′ + 2y = Re
[
e(−1+i)x

]
,

where Re(·) denotes the real part of an imaginary number. Notice a root of the character-
istic polynomial appears in the exponent. This caused trouble in Examples 21.1 and 21.6.
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Following Theorem 21.8, we multiply by x (because only one root appears in the exponential
function on the right-hand-side) and see that:

L
{
[ax cos(x) + bx sin(x)] e−x

}
= 2be−x cos[x]− 2ae−x sin[x]

Thus, setting a = 0 and b = 1
2
we have the specific solution:

ψ(x) =
1

2
xe−x sin(x).

We can then combine this with the general solution to the homogeneous equation to see:

y(x) = C1e
−x cos(x) + C2e

−x sin(x) +
1

2
xe−x sin(x).

Remark 22.3. Just as before, we can generalize these results into a full theorem.

Theorem 22.4. Consider the ODE with form:

y′′ + ay′ + by = eαxxn sin(βx) or y′′ + ay′ + by = eαxxn cos(βx)

The specific solution has form:

ψ(x) = xs
[(
anx

n + an−1x
n−1 + · · ·+ a0

)
eαx cos(βx)+(
bnx

n + bn−1x
n−1 + · · ·+ b0

)
eαx sin(βx)

]
,

where s is the number of times α + βi appears as a root in the characteristic polynomial of
the ODE. □

Remark 22.5. The proof of the full theorem is very fiddly and a bit dull. In a sense it
provides no new insights and is entirely about bookkeeping. Those interested in it can refer
to a book on ordinary differential equations.

Remark 22.6. There is a point where finding the solution using the method of undetermined
coefficients becomes algebraically unpleasant. It is generally useful only to know the structure
of the solution rather than the exact solution. A computer algebra system can be used to
find specific solutions, if needed.

2. Forced Oscillation - Undamped Case

Derivation 22.7. Consider the undamped harmonic oscillator but with a forcing function:

mẍ+ kx = A cos(ωt).

Here A is some parameter and ω is the forcing frequency. This time we define:

ω0 =

√
k

m
.

The ODE can be rewritten as:

ẍ+ ω2
0x = A cos(ωt),

where we are ignoring the fact we have divided by m because A is just a parameter that is
provided from outside. The homogeneous equation is

ẍ+ ω2
0x = 0,
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with operator:

L =
d2

dt2
+ ω2

0 = 0,

with characteristic equation s2+ω2
0 = 0. This implies the roots of the characteristic equation

are ±iω0. Recall from Derivation 18.7 that the solution to the homogeneous harmonic
oscillator is:

x(t) = A0 cos(ω0t− ϕ).

First assume that ω0 ̸= ω. Applying the method of undetermined coefficients to this
problem. Using Theorem 22.4 we assume:

ψ(t) = a cos(ωt) + b sin(ωt).

Applying L we see:

L [a cos(ωt) + b sin(ωt)] = a
(
ω2
0 − ω2

)
cos(ωt) + b

(
ω2
0 − ω2

)
sin(ωt).

From this, we see that setting b = 0 and:

a =
A

ω2
0 − ω2

,

will yield the appropriate right-hand-side. We conclude that the specific solution is:

ψ(t) =
A

ω2
0 − ω2

cos(ωt).

The general solution is then:

x(t) = A0 cos(ω0t− ϕ) +
A

ω2
0 − ω2

cos(ωt),

where A0 and ϕ are set using initial conditions.

Example 22.8. If we have the specific ODE:

ẍ+ x = cos(2t),

the solution is:

x(t) = A0 cos(t− ϕ)− 1

3
cos(2t)

Suppose x(0) = 0 and x′(0) = 0, we need to determine A0 and ϕ. Plugging in t = 0 to x(t)
and x′(t) we see:

x(0) = A0 cos(−ϕ)−
1

3
= 0 =⇒ A0 cos(−ϕ) =

1

3
x′(0) = −A0 sin(−ϕ) = 0 =⇒ A0 sin(−ϕ) = 0.

Then dividing these two terms we see:

tan(−ϕ) = 0 =⇒ ϕ = 0.

when we assume that ϕ ∈ [−π/2, π/2] (which is sensible because there would really be an
infinite number of equivalent solutions otherwise). Now this implies:

A0 cos(−ϕ) =
1

3
=⇒ A0 =

1

3
.
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So the solution is:

x(t) =
1

3
[cos(t)− cos(2t)]

The solution is shown in Fig. 22.1.

Figure 22.1. The forced harmonic oscillator with ω0 = 1 and ω = 2.

Example 22.9 (Beat Frequency). Suppose that x(0) = 0 and ẋ(0) = 0. That is, the initial
velocity of the driven harmonic oscillator is 0 and the oscillator starts at x0 = 0. For these
initial conditions, we can deduce that:

A0 = − A

ω2
0 − ω2

ϕ = 0.

The solution is then:

x(t) =
A

ω2
0 − ω2

[cos(ωt)− cos(ω0t)] .

Using a trigonometric identity, we can write:

cos(ωt)− cos(ω0t) = 2 sin

(
ω0 − ω

2
t

)
sin

(
ω0 + ω

2
t

)
.

This implies the solution is:

x(t) =
2A

ω2
0 − ω2

sin

(
ω0 − ω

2
t

)
sin

(
ω0 + ω

2
t

)
.

When |ω0 − ω| is small, the result is a time varying amplitude:

A(t) =
2A

ω2
0 − ω2

sin

(
ω0 − ω

2
t

)
that creates an envelope around the primary sinusoid; that is:

x(t) = A(t) sin

(
ω0 + ω

2
t

)
.

The result can be heard as an oscillation in volume and is called a beat with beat frequency
|ω0 − ω|/2. This is shown in Fig. 22.2.
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Figure 22.2. The forced harmonic oscillator with ω0 = 1 and ω = 10/11.
The resulting sinusoidal envelope that changes the amplitude results in a beat
frequency.





LESSON 23

1. Forced Oscillation - Undamped Resonance

Derivation 23.1. Notice in our analysis of the forced undamped oscillator:

ẍ+ ω2
0x = A cos(ωt),

we have the expression ω2
0 − ω2 in the denominator of the solution. If ω = ω0, we must use

a different analysis. Applying Theorem 22.4, the solution must have form:

ψ(t) = t [a cos(ω0t) + b sin(ω0t)] .

Applying the operator:

L =

(
d2

dt2
+ ω2

0

)
yields:

L(ψ) = 2ω0 (b cos (ω0t)− a sin (ω0t))

Thus we set a = 0 and:

b =
A

2ω0

.

The general solution is then:

x(t) = A0 cos(ω0t− ϕ) +
A

2ω0

t sin(ω0t)

Notice the amplitude of x(t) grows linearly in time as shown in Fig. 23.1. The linear growth

Figure 23.1. Resonance in which the amplitude of the solution x(t) grows
linearly in time is caused by the driving frequency matching the natural fre-
quency of the harmonic oscillator. Here ω = ω0 = 2π, A0 = 1, ϕ = 0 and
A = 2.
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in the amplitude is caused by the fact that the driving frequency matching the natural
frequency of the harmonic oscillator. This is called resonance.

Remark 23.2. There are a number of phenomena attributed to resonance. However, one
we are all familiar with is sloshing tea or coffee while walking. It turns out water in a cup
has a resonant frequency that is roughly equal to the frequency of the human gait.

2. Underdamped Oscillation with Forcing

Derivation 23.3. Consider the damped oscillator with forcing:

mÿ + bẏ + ky = A cos(ωt).

If we assume the un-forced system is underdamped so that b2 − 4mk < 0 the solution to the
homogeneous ODE is:

φ(t) = e−αt [A cos(ω0t− ϕ)] ,

with:

α =
b

2m

ω0 =

√
4mk − b2

2m
.

The operator in this case is:

L = m
d2

dx2
+ b

d

dx
+ k.

Let:

ψ(t) = r1 cos(ωt) + r2 sin(ωt).

Applying L we have:

L[ψ] = cos(ωt)
(
br2ω + kr1 −mr1ω

2
)
−
(
br1ω − kr2 +mr2ω

2
)
sin(ωt).

We need:

A =
(
br2ω + kr1 −mr1ω

2
)

0 =
(
br1ω − kr2 +mr2ω

2
)

Solving for r1 and r2 yields:

r1 =
A (k −mω2)

b2ω2 + (k −mω2)2

r2 =
Abω

b2ω2 + (k −mω2)2
.

We conclude that:

ψ(t) =
A (k −mω2)

b2ω2 + (k −mω2)2
cos(ωt) +

Abω

b2ω2 + (k −mω2)2
sin(ωt).
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Thus the solution to the problem is:

y(t) = φ(t) + ψ(t) = e−αt [A cos(ω0t− ϕ)] +

A (k −mω2)

b2ω2 + (k −mω2)2
cos(ωt) +

Abω

b2ω2 + (k −mω2)2
sin(ωt).

For small time t ≈ 0, we see the solution is made of the sum of two parts, a sinusoid with
natural frequency ω0 and a sinusoid with the driving frequency ω. However as t → ∞, the
behavior transitions to being governed entirely by a sinusoid with driving frequency. This is
because:

lim
t→∞

e−αt [A cos(ω0t− ϕ)] = 0.

We illustrate this in Fig. 23.2 where we see the initial transient behavior settles into the
driven. This long term behavior is called stationary while the initial behavior is called
transient or transitory.

Figure 23.2. Damped driven oscillation goes through a transitory behavior
to arive at the stationary behavior governed by a driving frequency. Here,
m = 1, b = 2, k = 5 A = 1 and ω = 1.





LESSON 24

1. More Examples of the Method of Undetermined Coefficients

Example 24.1. Consider the ODE:

y′′ − y′ − 2y = e−x

Step 1: Find the roots of the characteristic equation:

s2 − s− 2 = (s− 2)(s+ 1) = 0.

The two roots are s = −1 and s = 2. Notice e−1x appears on the right-hand-side. We must
be careful here.
Step 2: Assume the structure of the solution:

ψ(x) = x
(
ae−x

)
= axe−x,

where multiplication by x arises because −1 is a root of the characteristic equation and e−x

is on the right-hand-side.
Step 3: Compute the L(ψ), where:

L =
d2

dx2
− d

dx
− 2,

this is the operator defining the original ODE. To compute this we need:

dψ

dx
= ae−x − axe−x

d2ψ

dx2
= −ae−x − ae−x + axe−x = −2ae−x + axe−x.

Computing L[ψ(x)] we have:

d2ψ

dx2
− dψ

dx
− 2ψ(x) = −3ae−x.

To solve the ODE we need:

L[ψ(x)] = −3ae−x = e−x,

where the right-hand-side comes from the original ODE. To make this true, we need:

−3a = 1 =⇒ a = −1

3
.

Therefore:

ψ(x) = −1

3
xe−x.

Step 4: The general solution to the homogeneous ODE:

L[y] = y′′ − y′ − 2y = 0,
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is:

φ(x) = C1e
−x + C2e

2x.

Step 5: The complete solution is thus:

y(x) = φ(x) + ψ(x) = C1e
−x + C2e

2x − 1

3
xe−x.

Example 24.2. Consider the ODE:

ẍ+ 2ẋ+ 5x = sin(t)

Step 1: Find the roots of the characteristic equation:

s2 + 2s+ 5 = 0.

Using the quadratic formula we see:

s =
−2±

√
4− 20

2
= −1± 2i.

Note, the right-hand-side does not look like e−t sin(2t) or e−t cos(2t), so we do not have to
multiply by an extra power of t in ψ(t).
Step 2: Assume the structure of the solution:

ψ(t) = a cos(t) + b sin(t).

Step 3: Compute L(ψ) where:

L =
d

dt2
+ 2

d

dt
+ 5,

this is the operator defining the original ODE. To compute this we need:

dψ

dt
= −a sin(t) + b cos(t)

d2ψ

dt2
= −a cos(t)− b sin(t).

Computing L[ψ(t)] yields:

d2ψ

dt2
+ 2

dψ

dt
+ 5ψ = (4a+ 2b) cos(t) + (4b− 2a) sin(t).

To solve the ODE, we need:

L[ψ(x)] = (4a+ 2b) cos(t) + (4b− 2a) sin(t) = sin(t),

where the right-hand-side comes from the original ODE. So we need a and b to satisfy:

4a+ 2b = 0

−2a+ 4b = 1

Therefore b = 1
5
and a = − 1

10
. This means:

ψ(t) = − 1

10
cos(t) +

1

5
sin(t).

Step 4: The general solution to the homogeneous ODE:

L[x] = ẍ+ 2ẋ+ 5x = 0,
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is:

φ(t) = e−t [C1 cos(2t) + C2 sin(2t)] .

Step 5: The complete solution is thus:

x(t) = φ(t) + ψ(t) = e−t [C1 cos(2t) + C2 sin(2t)]−
1

10
cos(t) +

1

5
sin(t).

Example 24.3. Consider the ODE:

d2y

dx2
+ 6

dy

dx
+ 9y = xe−3x

Step 1: Find the roots of the characteristic equation:

s2 + 6s+ 9 = (s+ 3)(s+ 3) = 0.

There is a double root at s = −3. Notice e−3x appears on the right-hand-side, so we need
use a multiple of x2 in the particular solution form.
Step 2: There is a first degree polynomial x and an exponential on the right-hand-side.
Assume the structure of the solution:

ψ(x) = x2 (ax+ b) e−3x = (ax3 + bx2)e−3x.

Step 3: Compute L(ψ) where:

L =
d

dx2
+ 6

d

dx
+ 9,

this is the operator defining the original ODE. To compute this we need:

dψ

dx
=
(
3ax2 + 2bx

)
e−3x − 3(ax3 + bx2)e−3x =(

−3ax3 + (3a− 3b)x2 + 2bx
)
e−3x

d2ψ

dx2
= (6ax+ 2b) e−3x − 3

(
3ax2 + 2bx

)
− 3

(
3ax2 + 2bx

)
e−3x + 9

(
ax3 + bx2

)
e−3x =(

9ax3 + (9b− 18a)x2 + (6a− 12b)x+ 2b
)
e−3x

Computing L[ψ(x)] yields:

L[ψ(x)] = (6ax+ 2b)e−3x

To solve the ODE, we need:

L[ψ(x)] = xe−3x

where the right-hand-side comes from the original ODE. So we need a and b to satisfy:

6a = 1

2b = 0

Therefore b = and a = 1
6
. This means:

ψ(x) =
1

6
x3e−3x

Step 4: The general solution to the homogeneous ODE:

L[y] = y′′ + 6y′ + 9y = 0,
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is:

φ(x) = C1e
−3x + C2xe

−3x.

Step 5: The complete solution is thus:

y(x) = φ(x) + ψ(x) = C1e
−3x + C2xe

−3x +
1

6
x3e−3x.

Example 24.4. Consider the ODE:

ẍ+ 2ẋ+ 10x = e−t sin(3t)

Step 1: Find the roots of the characteristic equation:

s2 + 2s+ 10 = 0/

Using the quadratic formula we see:

s =
−2±

√
4− 40

2
= −1± 3i.

Notice that e−t sin(3t) is on the right-hand-side, which we can think of as the real part of
−ie(−1+3i)t, so the root appears in right-hand-side. We need add a multiple of t to the form
of ψ(t).
Step 2: Assume the structure of the solution:

ψ(t) = t (a cos(3t) + b sin(3t)) e−t.

Step 3: Compute L(ψ) where:

L =
d

dx2
+ 6

d

dx
+ 9,

this is the operator defining the original ODE. Computing this operator’s action on ψ(t) is
algebraically tedious. Using a computer algebra system, we have:

L[ψ(t)] = 6e−t [b cos(3t)− a sin(3t)] .

From this we conclude that: b = 0, since there is no cos(3t) on the right-hand-side of the
original ODE. Thus we need:

−6ae−t sin(3t) = e−t sin(3t),

which implies a = −1
6
. Therefore:

ψ(t) = −1

6
te−t sin(3t).

Step 4: The general solution to the homogeneous ODE:

L[x] = ẍ+ 2ẋ+ 10x = 0

is:

φ(t) = e−t [C1 cos(3t) + C2 sin(3t)] .

Step 5: The complete solution is thus:

x(t) = φ(t) + ψ(t) = e−t [C1 cos(3t) + C2 sin(3t)]−
1

6
te−t sin(3t).



Module 6

The Laplace Transform





LESSON 25

1. Function Classes

Remark 25.1. We will begin our study of the Laplace transform, a powerful technique for
solving differential equations, by considering the class of functions on which they are most
useful. For historical reasons all functions will be in terms of the independent variable t.

Definition 25.2 (Differentiability Classes). A function f : D ⊂ Rn → R is Ck if all partial
derivatives of f up to order k exist and the functions resulting from differentiation are
continuous. That is for all j ≤ k:

(25.1) v(x1, . . . , xn) =
∂jf

∂xm1
1 ∂xm2

2 · · · ∂xmn
n

exists and is continuous when m1 + · · ·+mn = j. If a function has all derivatives (and they
are continuous), then the function is C∞.

Remark 25.3. Some books define smooth to mean continuous and differentiable. Others
require the function to be continuous and twice differentiable to be smooth some require a
function to be C∞ to be smooth

Example 25.4. The function:

f(x) =

{
x2 if x ≥ 0

0 otherwise

is C1. To see this, note that:

f ′(x) =

{
2x if x ≥ 0

0 otherwise.

is continuous but f ′′(0) is not continuous and (in fact) doesn’t even exist at x = 0. This is
illustrated in Fig. 25.1.

-2 -1 0 1 2

0

1

2

3

4

-2 -1 0 1 2

0

1

2

3

4

Figure 25.1. A C1 function is illustrated whose derivative is C0, that is
continuous but without a continuous derivative.
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-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

x
y

Figure 25.2. A piecewise C1 function on the interval [−1, 1].

Definition 25.5 (Piecewise C1). A function f : [−L,L] → R is piecewise C1 if the interval
can be broken into a finite number of sub-intervals [l1, l2], . . . , [ln−1, ln] so that:

(1) f(x) is C1 on (li, li+1) for all i and
(2) f(x) is left (right) continuous at li+1 (li).

Remark 25.6. A function is piecewise C0 if we replace C1 in the definition by C0. This is
also called being piecewise continuous.

Remark 25.7. A piecewise C1 function (sometimes called piecewise smooth, but not always)
is a generally well behaved function that has a finite number of jump discontinuities. This
eliminates functions with cusps, asymptotes, vertical derivatives or generally anything non-
physical. The function:

f(x) =

{
1− x2 if −1 ≤ x < 0

x2 if 0 ≤ x ≤ 1

We illustrate this function in Fig. 25.2.

Remark 25.8. A piecewise continuous function can be integrated by breaking the integral
into the intervals on which the function is continuous and adding the results together.

Definition 25.9 (Exponential Type). A function f(t) is said to be of exponential type with
order α if there are constants T > 0, M > 0 and a value α so that:

|f(t)| ≤M exp (α|t|) .
for all t > T .

Remark 25.10. A function is of exponential type if its growth is bounded by an exponential
function. In particular, this just means it cannot grow too large too fast.

2. The Laplace Transform

Definition 25.11 (Laplace Transform). Let f(t) be a function. Then the Laplace Transform
of f is:

(25.2) L[f ](s) = F (s) =

ˆ ∞

0

f(t)e−st dt,

assuming that the integral exists.
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Remark 25.12. In the strictest sense F (s) is a complex function of a complex variable s.
However, we will not use this feature of the transform in our work (except once).

Example 25.13. Consider the simple function f(t) = c, where c is a constant. We can find
its Laplace transform as:

L [c] =

ˆ ∞

0

ce−st dt = −c
s
e−st

∣∣∣∞
0

= lim
t→∞

c

s
e−st − c

s
=
c

s
.

Example 25.14. Consider the function eat. We can find its Laplace transform as:

L
[
eat
]
=

ˆ ∞

0

eate−st dt =

ˆ ∞

0

e(a−s)t =
1

a− s
e(a−s)t

∣∣∣∣∞
0

= lim
t→∞

1

a− s
e(a−s)t − 1

a− s
.

This integral is defined just in case s > a (or in the case we treat s as complex, Re(s) > a).
In this case we see:

L
[
eat
]
=

1

s− a
if s > a.

Theorem 25.15. Suppose f(t) is piecewise continuous and exponential of order α. Then
F (s) exists assuming s > α.

Proof. Let T be the time constant in Definition 25.9.

L[f(t)] =
ˆ ∞

0

e−stf(t) dt =

ˆ T

0

e−stf(t) dt+

ˆ ∞

T

e−stf(t) dt.

The first integral clearly converges. For the second integral we have:ˆ ∞

T

e−stf(t) dt ≤
ˆ ∞

T

|e−stf(t)| dt ≤
ˆ ∞

T

e−stMeαt dt =

ˆ ∞

T

Me(α−s)t dt =
M

α− s
e(α−s)t

∣∣∣∣∞
T

=
M

s− α
e(α−s)T ,

when we assume s > α. Therefore, this integral converges and the Laplace transform exists
just in case s > α. □

Remark 25.16. The Laplace transform exists for most of the functions we will worry about
in this class.
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1. Other Properties of the Laplace Transform

Theorem 26.1. The Laplace transform is linear.

Proof. Let a ∈ R. We see:

L[af(t) + g(t)] =

ˆ ∞

0

[af(t) + g(t)] e−st dt =

a

ˆ ∞

0

f(t)e−st dt +

ˆ ∞

0

g(t)e−st dt = aL[f(t)] + L[g(t)].

□

Example 26.2. Recall the Laplace transform is a complex function of a complex variable
s, which we are largely ignoring. However, we can use this fact along with Example 25.14
and Theorem 26.1 to conveniently compute L[sin(ωt)]. Recall from Euler’s theorem: eiωt =
cos(ωt) + i sin(ωt). Using this information we can write:

sin(ωt) =
1

2i

(
eiωt − e−iωt

)
.

Now applying the Laplace transform we have:

L[sin(ωt)] = 1

2i

(
1

s− iω
− 1

s+ iω

)
.

Simplifying the fraction we have:

L[sin(ωt)] = 1

2i

2iω

s2 + ω2
=

ω

s2 + ω2
.

Derivation 26.3 (Exponential Multiplication). Consider the following Laplace transform:

L
[
f(t)eat

]
=

ˆ ∞

0

f(t)eate−st dt =

ˆ ∞

0

f(t)e−(s−a)t dt

Let σ = s− a. Then:ˆ ∞

0

f(t)e−(s−a)t dt =

ˆ ∞

0

f(t)e−σt dt = L[f(t)](σ) = F (σ) = F (s− a).

We have proved a theorem.

Theorem 26.4. If f(t) is a function with Laplace transform F (s), then:

L
[
f(t)eat

]
= F (s− a).

□

Remark 26.5. Thus we have proved that multiplying a function by eat shifts its Laplace
transform to the right.
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Derivation 26.6 (Derivatives and Laplace Transforms). Assume f(t) is differentiable with
piecewise continuous derivative and of exponential type. Consider the Laplace transform:

L[f ′(t)] =

ˆ ∞

0

f ′(t)e−st dt.

Let’s proceed by integration by parts. Let u(t) = e−st and dv = f ′(t)dt. Then: du = −se−st

and v = f(t). We have:

f(t)e−st
∣∣∞
0
−
ˆ ∞

0

−f(t)se−st dt = f(t)e−st
∣∣∞
0
+s

ˆ ∞

0

f(t)e−st dt = f(t)e−st
∣∣∞
0
+sL[f(t)].

We know that |f(t)| ≤Meαt. Therefore if s > α we have:

f(t)e−st
∣∣∞
0

= lim
t→∞

f(t)e−st − f(0).

No:

lim
t→∞

|f(t)e−st| ≤ lim
t→∞

Meαte−st = lim
t→∞

Me(α−s)t = 0,

when we assume s > α. Therefore:

f(t)e−st
∣∣∞
0
+ s

ˆ ∞

0

f(t)e−st dt = −f(0) + sL[f(t)].

Consequently we have proved a theorem.

Theorem 26.7. If f(t) is differentiable with piecewise continuous derivative and of ex-
ponential type with order α, then if s > α:

L[f ′(t)] = sL[f(t)]− f(0).

□

Example 26.8. Using Theorem 26.7 we can compute L[cos(ωt)]. Notice:
d

dt

[
1

ω
sin(ωt)

]
= cos(ωt).

So:

L[cos(ωt)] = L
{
d

dt

[
1

ω
sin(ωt)

]}
=

1

ω
{sL[sin(ωt)] + sin(0)} =

s

ω

ω

s2 + ω2
=

s

s2 + ωa
.

Remark 26.9. The following corollary can be proved by induction.

Corollary 26.10. If f(t) has n derivatives, with the nth derivative being piecewise contin-
uous and all of exponential order α. Then if s > α we have:

L
[
f (n)(t)

]
= snL[f(t)]− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

In particular we have:

L [f ′′(t)] = s2L[f(t)]− sf(0)− f ′(0).

□
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Derivation 26.11. Consider the question: Is there a g(t) so that if L[f(t)] = F (s), then
F ′(s) = L[g(t)]. Then:

F (s) =

ˆ ∞

0

f(t)e−st dt.

Taking the derivative with respect to s we have:

F ′(s) =
d

ds

[ˆ ∞

0

f(t)e−st dt

]
.

Passing the derivative through yields:

F ′(s) =

[ˆ ∞

0

−tf(t)e−st dt

]
.

Thus we conclude that if f(t) is piecewise continuous and of exponential type (implying that
tf(t) is piecewise continuous and of exponential type) that:

L[−tf(t)] = F ′(s).

Repeating this argument we can generalize the result.

Theorem 26.12. Suppose that f(t) is piecewise continuous and of exponential type.
Then:

F (n)(s) = L [(−1)ntnf(t)]

or equivalently:

(−1)nF (n)(s) = L [tnf(t)] .

□

2. Solving ODE’s with the Laplace Transform

Remark 26.13. The Laplace transform is invertible with formula:

f(t) = L−1[F (s)] =
1

2πi
lim
T→∞

ˆ γ+T i

γ−T i

F (s)est ds,

where γ ∈ R is chosen to ensure convergence of F (s). Using this integral is far outside the
scope of this course (since it requires contour integration). Consequently, we will use the
simplification and inspection method of inversion. However, the following theorem should
seem reasonable (and is useful).

Theorem 26.14. The inverse Laplace transform is linear. □.

Example 26.15. Suppose:

F (s) =
3

s2 − 1
.

We can write this as:

3

2

(
1

s− 1
− 1

s+ 1

)
.

By linearity, we can write:

L−1[F (s)] =
3

2

[
L−1

(
1

s− 1

)
− L−1

(
1

s+ 1

)]
.
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We know from Example 25.14 that:

1

s− 1
= L

(
et
)

1

s+ 1
= L

(
e−t
)

So we can conclude that:

L−1[F (s)] =
3

2

(
et − e−t

)
= 3 sinh(t).

Example 26.16. Let’s resolve the following ODE:

ÿ + ω2
0y = sin(ωt) y(0) = 0, ẏ(0) = 0

using a Laplace transform. Taking the Laplace transform of both sides yields:

s2Y (s) + sy(0)− ẏ(0) + ω0Y (s) = s2Y (s) + ω0Y (s) =
ω

s2 + ω2
.

We can now factor the left-hand-side to see:

(s2 + ω2
0)Y (s) =

ω

s2 + ω2

Dividing we have:

Y (s) =
ω

(s2 + ω2)(s2 + ω2
0)
.

Now all that remains is to find the inverse Laplace transform. Let’s find A and B so that:

1

(s2 + ω2)(s2 + ω2
0)

=
A

s2 + ω2
+

B

s2 + ω2
0

.

We can worry about the ω multiplier later, since the Laplace transform and its inverse are
linear. Using the method of partial fractions yields the equations:

A+B = 0

ω2
0A+ ω2B = 1

Some algebra shows:

A =
1

ω2
0 − ω2

B =
1

ω2 − ω2
0

.

For simplicity we will substitute these values at the end. We now have:

Y (s) =
ωA

s2 + ω2
+

ωB

s2 + ω2
0

.

We know:

L−1

[
ωA

(s2 + ω2)

]
= A sin(ωt)

L−1

[
ωB

(s2 + ω2
0)

]
=
ωB

ω0

sin(ω0t).

Substituting the inverse Laplace transforms and A and B we conclude:

y(t) =
ω0 sin(tω)− ω sin (tω0)

ω0(20−ω2)
,
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which has the same form as the solution in Example 22.8 except here we used a forcing
function with sin(ωt).

Remark 26.17. This is the power of the Laplace transform. It turns differential equations
into algebraic equations, which can then be manipulated more easily. The true power of this
approach, however, comes in allowing us to solve a new class of differential equations - those
with discontinuous right hand sides.

Remark 26.18. Notice we needed to use a partial fraction method to separate the terms to
“see” how to invert the Laplace transform. This is a hallmark of this approach (when one
does not use a computer to invert the Laplace transform). Going forward, we will assume
some familiarity with the method of partial fractions.





LESSON 27

1. The Dirac Delta and Unit Step Functions

Remark 27.1. There are several ways to formally define the Dirac delta function. We’ll use
the limit of functions approach and hint at the linear functional method. It is also worth
noting there are many ways to approach the limit of functions definition. We’ll use the one
from [Olv14] because it’s pretty and uses a fact from Calculus 1.

Lemma 27.2. The following equation holds:ˆ
n

π(1 + n2x2)
dx =

1

π
tan−1(nx).

□

Definition 27.3. Let:

fn(x) =
n

π(1 + n2x2)
.

Then:

δ(x) = lim
n→∞

fn(x).

Remark 27.4. The functions fn(x) are illustrated in Fig. 27.1.

Figure 27.1. The limit of the functions fn(x) converges to what we call the
Dirac Delta function.

Corollary 27.5. The following equation holds:ˆ ∞

−∞

n

π(1 + n2x2)
dx = 1.
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Proof. We are assuming n is a positive integer. We know:

lim
x→∞

1

π
tan−1(nx) =

1

π

π

2
=

1

2

lim
x→−∞

1

π
tan−1(nx) = − 1

π

π

2
= −1

2

The result follows immediately. □

Remark 27.6. Given Corollary 27.5 we would hope that:

lim
n→∞

ˆ ∞

−∞
fn(x) dx =

ˆ ∞

−∞

[
lim
n→∞

fn(x)
]
dx =

ˆ ∞

−∞
δ(x) dx = 1.

As we’ve discussed in the past, showing that the limit can be passed through the integral
requires showing convergence properties that are well outside the scope of this course. More
to the point, with ordinary Riemann (or even Lebesgue) integration, this equality is incor-
rect. To make this sensible mathematically requires an entirely different course on analysis.
We are just going to accept it as true for expediency. More to the point we’re actually going
to accept the following theorem.

Theorem 27.7. Suppose ξ ∈ [a, b]. Then:ˆ b

a

δ(x− ξ) dx = 1.

On the other hand, if ξ ̸∈ [a, b], then:ˆ b

a

δ(x− ξ) dx = 0.

□

Derivation 27.8 (Heaviside Step Function). Consider the function:

H(x) =

ˆ x

−∞
δ(s) ds.

We see immediately from Theorem 27.7 and that this is the step function:

H(x) =

{
0 if x < 0

1 if x > 0.

This function is not defined at x = 0. This is the Heaviside step function or unit step
function. As a consequence of this result we say:

dH

dx
= δ(x).

The Heaviside step function is shown in Fig. 27.2. For many applications, the value at x = 0
is filled in with H(0) = 1

2
and for other applications we assume H(0) = 0. This does not

really affect the relation to δ(x).

Derivation 27.9. Assume g(x) is a function defined on [a, b] with ξ ∈ (a, b). Another
interesting property of fn(x) is:

lim
n→∞

ˆ b

a

fn(x− ξ)g(x) dx = g(ξ).
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Figure 27.2. The Heaviside step function.

In much the same way we did with Eq. (27.1), we can assert that if ξ ∈ [a, b], then:

(27.1)

ˆ b

a

δ(x− ξ)g(x) dx = g(ξ).

Interestingly, because the δ function is even we also have:

(27.2)

ˆ b

a

δ(x− s)g(s) dx = g(x).

We now have the following theorem, which we certainly will not prove but will take on faith.

Theorem 27.10. If ξ ∈ [a, b] and g(x) is continuous at ξ, then:ˆ b

a

δ(x− ξ)g(x) dx = g(ξ).

□

Derivation 27.11. We can now compute the Laplace transform of the Dirac function and
the Heaviside step function. Assume ξ ∈ [0,∞):

L[δ(t− ξ)] =

ˆ ∞

0

δ(t− ξ)e−st dt

Applying Eq. (27.1) we have:

L[δ(t− ξ)] = e−sξ.

Likewise, if we compute:

L[H(t− ξ)] =

ˆ ∞

0

H(t− ξ)e−st dt =

ˆ ∞

ξ

e−st dt = −e
−st

s

∣∣∣∣∞
ξ

=
e−ξs

s

We can generalize this.

Remark 27.12. To shift a function f(t) to the right by ξ time-units, one simply uses input
t − ξ. That is f(t − ξ) shifts f(t) to the right. However, if f(t) is specialized to model
only positive time (t ≥ 0) this shift has the unfortunate affect of adding information at
t = 0. To cancel this information, we can multiply by the shifted Heaviside step function:
H(t− ξ)f(t− ξ).
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Theorem 27.13. Suppose ξ ∈ [0,∞), then:

L[H(t− ξ)f(t− ξ)] = e−ξsF (s)

Proof. Compute:

L[H(t− ξ)f(t− ξ)] =

ˆ ∞

0

H(t− ξ)f(t− ξ)e−st dt.

Let τ = t− ξ and dτ = dt. Then we have:

L[H(t− ξ)f(t− ξ)] =

ˆ ∞

−ξ

H(τ)f(τ)e−s(τ+ξ) dτ =

ˆ ∞

−ξ

H(τ)f(τ)e−sτe−sξ dτ =

e−sξ

ˆ ∞

−ξ

H(τ)f(τ)e−sτ dτ.

But H(τ) = 0 if τ < 0 and otherwise H(τ) = 1 if τ > 0. Consequently the final integral
becomes:

e−sξ

ˆ ∞

−ξ

H(τ)f(τ)e−sτ dτ = e−sξ

ˆ ∞

0

f(τ)e−sτ dτ = e−sξL[f(τ)] = e−sξF (s).

□
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1. Solving More ODE’s with the Laplace Transform

Example 28.1. Consider the following differential equation:

dy

dt
− ky = δ(t− ξ),

where k ∈ R is a constant. Assume the initial condition y(0) = 0. We can now solve
this problem. For simplicity, we assume ξ ≥ 0. To solve this problem, apply the Laplace
transform to both sides:

L
(
dy

dt

)
= L [ky + δ(t− ξ)] .

Using Theorem 26.7, we have:

sY (s)− y(0) = kW (s) + e−ξs.

We know y(0) = 0 and we can solve for Y (s) to obtain:

Y (s) =
e−ξs

s− k
= e−ξs 1

s− k
.

Now we can back infer that:

y(t) = H(t− ξ)ek(t−ξ) =

{
ek(t−ξ) if t > ξ

0 if t < ξ.

For consistency with the initial condition, when ξ = 0 we write:

y(t) = H(t)ekt =

{
ekt if t > 0

0 if t ≤ 0.

Example 28.2 (Non-homogeneous Piecewise Continuous Terms - Part 1). Let’s solve the
problem:

y′′ + 3y′ + 2y = [H(t− 5)−H(t− 20)] et y(0) = y′(0) = 0.

Using the definition of the Heaviside function, we can see that:

H(t− 5)−H(t− 20) =

{
1 5 < t < 20

0 otherwise.

This models a switch that turns off at time t = 5 and turns off at time t = 20. Let’s apply
the Laplace transform to H(t− ξ)eat. We know from Derivation 27.11:

L[H(t− ξ)] =
e−ξs

s
.
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We know from Theorem 26.4 we have:

L
[
f(t)eat

]
= F (s− a).

Putting these two things together we see:

(28.1) L[H(t− ξ)eat] = L[H(t− ξ)](s− a) =
e−ξs

s

∣∣∣∣
s=s−a

=
e−ξ(s−a)

s− a
.

Now taking the Laplace transform of the original equation we have:

s2Y (s)− sy′(0)− y(0) + 3 [sY (s)− y(0)] + 2Y (s) =
e−5(s−1)

s− 1
− e−20(s−1)

s− 1
.

Simplifying we have:

Y (s)
(
s2 + 3s+ 2

)
=
e−5(s−1) − e−20(s−1)

s+ 1

Dividing through and factoring yields:

Y (s) =
e−5(s−1) − e−20(s−1)

(s− 1)(s+ 1)(s− 2)

Now apply partial fraction decomposition:

Y (s) =
(
e−5(s−1) − e−20(s−1)

) [ 1

6(s+ 1)
+

1

3(s− 2)
− 1

2(s− 1)

]
.

Parts of this are now easy to invert and other parts are difficult. We can read from Eq. (28.1)
that:

L−1

[
−e

−5(s−1) − e−20(s−1)

2(s− 1)

]
= −H(t− 5)et −H(t− 20)et

2
.

The more difficult part are the Laplace transforms:

L−1

[
e−5(s−1) − e−20(s−1)

3(s− 2)

]
and

L−1

[
e−5(s−1) − e−20(s−1)

6(s+ 1)

]
.

To complete the example, we need a derivation.

Derivation 28.3. Consider the Laplace transform of ea(t−c)f(t). We have:

L
[
ea(t−c)f(t)

]
=

ˆ ∞

0

ea(t−c)f(t)e−st dt =

ˆ ∞

0

e−(s−af(t)e−ac dt = e−acF (s− a),

using the same reasoning as in Theorem 26.4.

Example 28.4 (Non-homogeneous Piecewise Continuous Terms - Part 2). We now compute:

L−1

[
e−5(s−1)

(s+ 1)

]
.

From the denominator, we know we are dealing with a function of form e−(t−c)f(t) because
the (s+1) = s− (−1) in the denominator implies some multiplier of form e−(t−c). From the
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numerator we know that f(t) = H(t − 5). We must identify c; we already know a = −1.
Using Derivation 28.3 and Eq. (28.1) we know:

L
[
e−(t−c)H(t− 5)

]
= ec

e−5(s+1)

s+ 1
=︸︷︷︸

want

e−5(s−1)

(s+ 1)

Relating the numerator of the computed Laplace transform to the numerator of the known
Laplace transform we have:

ece−5(s+1) = e−5(s−1).

This implies:

c− 5s− 5 = −5s+ 5 =⇒ c = 10.

Thus we have deduced that:

L−1

[
−e

−5(s−1)

(s+ 1)

]
= e−(t−10)H(t− 5).

We go through the same process to find the inverse transform of the right-hand-side and we
deduce:

y(t) =
1

6

[
e10−tH(t− 5)− e40−tH(t− 20)

]
+

1

3

[
e2(t−5)+5H(t− 5)− e2(t−20)+20H(t− 20)

]
− 1

2

[
etH(t− 5)− etH(t− 20)

]
.

This can be factored as:

y(t) = H(t−5)

[
1

6
e10−t +

1

3
e2(t−5)+5 − 1

2
et
]
−H(t−20)

[
1

6
e40−t +

1

3
e2(t−20)+20 − 1

2
et
]
.

2. Introduction to Green’s Functions∗

Definition 28.5 (Green’s Function). Consider a one-dimensional linear operator L with
some given boundary conditions. We assume the operator works on the variable t; e.g., L
is a derivative with respect to t. A Green’s function solution is a function G(t, s) satisfying
the boundary conditions with the property that:

L[G(t, s)] = δ(t− s).

Note: I’m using the preferred Physics definition of the Green’s function. In math, it’s defined
as L[G(t, s)] = δ(s− t). As we know from Eq. (27.2), it makes no difference.

Remark 28.6. We first note that not every operator admits a Green’s function solution.
Second, if the operator is translation invariant (e.g., has constant coefficients), then the
Green’s function is a univariate function G(z) and:

G(t, s) = G(t− s).

Derivation 28.7. Assume an operator L in one dimension admits a Green’s function. It’s
worth asking, why would anyone care? Consider the following non-homogenous (and there-
fore hard) problem:

L[w(t)] = f(t),
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where w(t) is an unknown function satisfying some boundary conditions on an interval [a, b],
with 0 ∈ (a, b). (If zero is not in the interval, we can always shift the interval to make this
true.) Suppose G(t, s) is a Green’s function. Then:

L[G(t, s)] = δ(t− s).

Now consider the integral on [a, b]:ˆ b

a

G(t, s)f(s) ds.

Apply the operator L and assume that L commutes with the integral (a big assumption).

L

[ˆ b

a

G(t, s)f(s) ds

]
=

ˆ b

a

L[G(t, s)]f(s) ds =

ˆ b

a

δ(t− s)f(s) ds = f(t),

for t ∈ [a, b]. Thus the Green’s function can be used to solve the non-homogenous problem
by the integral operator:

w(t) = I[f(s)] =

ˆ b

a

G(t, s)f(s) ds.

When G(t, s) = G(t − s), then this integral is called a convolution of G and f and G is
sometimes called the kernel. We have:

w(t) =

ˆ b

a

G(t− s)f(s) ds.

Remark 28.8. The Laplace transform (and its cousin the Fourier transform) have inter-
esting properties with respect to convolution. In particular Laplace and Fourier transforms
turn convolution into multiplication. This is a topic that should be covered in Math 411 or
Math 412.

Example 28.9. Using Example 28.1, we have deduced that:

G(t, ξ) =

{
ek(t−ξ) if t > ξ

0 if t < ξ.

We can conclude that given the problem:

dw

dt
− kw = f(t)

w(0) = 0,

we have:

w(t) =

ˆ t

0

G(t, ξ)f(ξ) dξ = ekt
ˆ t

0

e−kξf(ξ) dξ.
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1. Four More Examples of the Laplace Transform

Remark 29.1. For these examples, we will be using the table of Laplace transforms available
at: https://tutorial.math.lamar.edu/classes/de/Laplace_Table.aspx.

Example 29.2. To solve the problem:

ÿ + 6ẏ + 5y = 0 y(0) = 4, ẏ(0) = 0,

we compute the Laplace transform of both sides of the equation. We have:

s2Y (s)− sy(0)− ẏ(0) + 6 [sY (s)− y(0)] + 5Y (s) = 0.

Substituting initial condition values and simplifying yields:

(s2 + 6s+ 5)Y (s)− 4(s+ 6)− 0 = 0.

Isolating Y (s) yields:

Y (s) = 4
s+ 6

s2 + 6s+ 5
= 4

s+ 6

(s+ 5)(s+ 1)
.

Now apply the method of partial fractions:

s+ 6

(s+ 5)(s+ 1)
=

A

s+ 1
+

B

s+ 5
.

This yields:

As+ 5A+Bs+B = s+ 6.

This gives the two equations:

A+B = 1

5A+B = 6.

Solving gives A = 5
4
and B = −1

4
. We can now write:

Y (s) = 4

[
5

4

1

s+ 1
− 1

4

1

s+ 5

]
= 5

1

s+ 1
− 1

s+ 5
.

Recall:

L
[
eat
]
=

1

s− a
,

so we conclude:

y(t) = 5e−t − e−5t.
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Example 29.3. To solve the forced harmonic oscillator problem:

ÿ + 4ẏ = cos(2t) y(0) = ẏ(0) = 0

we compute the Laplace transform of both sides of the equation. We have:

s2Y (s)− sy(0)− ẏ(0) + 4Y (s) = (s2 + 4)Y (s) =
s

s2 + 4
,

where the right-hand-side is the Laplace transform of cos(2t). Then we have:

Y (s) =
s

(s2 + 4)2
.

We know:

L [t sin(at)] =
2as

(s2 + a2)2
,

setting a = 2 we would have:

L [t sin(2t)] =
4s

(s2 + 4)2
= 4

s

(s2 + 4)2
.

Therefore:

1

4
L [t sin(2t)] =

s

(s2 + 4)2
.

We conclude:

y(t) =
1

4
t sin(2t).

Example 29.4. To solve the problem:

ÿ + 3ẏ + 2y = et y(0) = 1, ẏ(0) = 3,

we compute the Laplace transform of both sides of the equation. We have:

s2Y (s)− sy(0)− ẏ(0) + 3 [sY (s)− y(0)] + 2Y (s) =
1

s− 1
.

Simplifying and substituting in the initial conditions yields:

(s2 + 3s+ 2)Y (s)− (s+ 3) + 3 =
1

s− 1
,

or

Y (s) =
1

(s− 1)(s2 + 3s+ 2)
+

s

s2 + 3s+ 2
.

We can break this into pieces and apply partial fractions. First note: s2 + 3s + 2 = (s +
1)(s+ 2). We start with the simpler piece:

s

(s+ 1)(s+ 2)
=

A

s+ 1
+

B

s+ 2

Then: As+ 2A+Bs+B = s. Solving for A and B yields A = −1, B = 2 or:

s

(s+ 1)(s+ 2)
=

2

s+ 2
− 1

s+ 1
.
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Now:
1

(s− 1)(s+ 1)(s+ 2)
=

A

s− 1
+

B

s+ 1
+

C

s+ 2

The numerator can be computed as:

(A+B + C)s2 + (3A+B)s+ (2A− 2B − C) = 1

Then:

A+B + C = 0

3A+B = 0

2A− 2B − C = 0

We see A = 1
6
, B = −1

2
and C = 1

3
. Adding the two partial fractions results together yields:

Y (s) =
1

6

1

s− 1
− 1

2

1

s+ 1
+

1

3

1

s+ 2
+

2

s+ 2
− 1

s+ 1
=

1

6

1

s− 1
− 3

2

1

s+ 1
+

7

3

1

s+ 2
.

We conclude:

y(t) =
1

6
et − 3

2
e−t +

7

3
e−2t.

Example 29.5. Consider a damped harmonic oscillator with an impulse (hammer striking
a damped harmonic oscillator):

ÿ + 2ẏ + 2y = δ(t− 1) y(0) = ẏ = 0.

We compute the Laplace transform of both sides of the equation:

s2Y (s)− sy(0)− ẏ(0) + 2 [sY (s)− y(0)] + 2Y (s) = e−s,

which simplifies to:

(s2 + 2s+ 2)Y (s) = e−s.

Solving for Y (s) yields:

Y (s) = e−s 1

s2 + 2s+ 2
.

Complete the square in the denominator to see:

Y (s) = e−s 1

(s+ 1)2 + 1
.

We now:

L
[
eat sin(bt)

]
=

b

(s− a)2 + b2
.

Letting a = −1 and b = 1 we see:

L
[
e−t sin(t)

]
=

1

(s+ 1)2 + 1
.

We also know that:

L [H(t− c)f(t− c)] = e−csF (t).
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From this we conclude that:

L
[
H(t− 1)e−t−1 sin(t− 1)

]
= e−s 1

(s+ 1)2 + 1
.

Therefore:

y(t) = H(t− 1)e−t−1 sin(t− 1) =

{
et−1 sin(t− 1) t > 1

0 t < 0



Module 7

Systems of Differential Equations
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1. Matrices

Remark 30.1. For a really good introduction to Linear Algebra see [Lan12] by Lang. Lang
really does write the best books.

Definition 30.2 (Matrix). Anm×n matrix is a rectangular array of values (scalars), drawn
from a set of numbers called a field. For us, the field will always be R. We write Rm×n to
denote the set of m× n matrices with entries drawn from R.

Example 30.3. The following are matrices:

A =

[
1 2
3 4

]
B =

1 0 0
0 1 0
0 0 1


Remark 30.4. If A ∈ Rm×n, then the matrix consists of m rows and n columns. The
element in the ith row and jth column of A is written as Aij. The jth column of A can be
written as A·j, where the · is interpreted as ranging over every value of i (from 1 to m).
Similarly, the ith row of A can be written as Ai·. When m = n, then the matrix A is called
square.

Remark 30.5 (Matrix Addition). Matrices add componentwise as illustrated in the example
below.

Example 30.6. Consider the sum:[
1 2
3 4

]
+

[
4 5
6 7

]
=

[
5 7
9 11

]
Definition 30.7 (Row/Column Vector). A 1×n matrix is called a row vector, and a m× 1
matrix is called a column vector. For the remainder of these notes, every vector will be
thought of column vector unless otherwise noted. To save space, column vectors are
written horizontally with angle brackets, such as: x = ⟨x1, . . . , xn⟩.

Remark 30.8. It should be clear that any row of matrix A could be considered a row vector
in Rn and any column of A could be considered a column vector in Rm.

Definition 30.9 (Dot Product). Let x and y be two vectors (either row or column) with n
elements. Then the dot product of x with y is:

(30.1) x · y =
n∑

i=1

xiyi

Definition 30.10. Two vectors x and y are orthogonal if x · y = 0. (Here 0 is the zero in
the field over which the vectors are defined.)

159
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Definition 30.11 (Norm). If x is a vector, then ||x|| =
√
x · x is the norm of the vector. It

is simply the length of the vector in Euclidean space.

Definition 30.12 (Orthonormal Vectors). If two vectors x and y are orthogonal and both
vectors have norm equal to 1, then they are said to be orthonormal.

Definition 30.13 (Matrix Multiplication). If A ∈ Rm×n and B ∈ Rn×p, then C = AB is
the matrix product of A and B and

(30.2) Cij = Ai· ·B·j

Note, Ai· ∈ R1×n (an n-dimensional vector) and B·j ∈ Rn×1 (another n-dimensional vector),
thus making the dot product meaningful.

Example 30.14.

(30.3)

[
1 2
3 4

] [
5 6
7 8

]
=

[
1(5) + 2(7) 1(6) + 2(8)
3(5) + 4(7) 3(6) + 4(8)

]
=

[
19 22
43 50

]
2. Special Matrices and Vectors

Definition 30.15 (Identity Matrix). The n× n identify matrix is:

(30.4) In =


1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 . . . 1


Example 30.16. Notice that identify matrices have a special property. If B ∈ Rm×n and
Im is the m×m identity matrix, then ImB = B. For example:[

1 0
0 1

] [
1
2

]
=

[
1
2

]
and [

1 0
0 1

] [
1 2
3 4

]
=

[
1 2
3 4

]
Definition 30.17 (Zero Matrix). The n× n zero matrix an n× n consisting entirely of 0.

Definition 30.18 (Invertible Matrix). Let A ∈ Rn×n be a square matrix. If there is a
matrix A−1 such that

(30.5) AA−1 = A−1A = In

then matrix A is said to be invertible (or nonsingular) and A−1 is called its inverse. If A is
not invertible, it is called a singular matrix.

Remark 30.19. Finding a matrix inverse (assuming it exists) requires using some numerical
technique. There is a formula for 2 × 2 matrices, which are the ones we will be using for
practical problems. If:

A =

[
a b
c d

]
,
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then the inverse is:

A−1 =
1

ad− bc

[
d −b
−c a

]
assuming ad− bc ̸= 0. We will find in the next section that this quantity has a special name.

Definition 30.20 (Diagonal Matrix). A diagonal matrix is a (square) matrix with the
property that Dij = 0 for i ̸= j and Dii may take any value in the field on which D is
defined.

Remark 30.21. Thus, a diagonal matrix has (usually) non-zero entries only on its main
diagonal. These matrices will play a critical roll in our analysis and are especially simple.
They behave just like scalars (numbers) in their operations.

Definition 30.22 (Linear Independence). A set of (column or row) vectors v1, . . . ,vn is
linearly independent if the equation:

α1v1 + α2v2 + · · ·+ αnvn = 0

just in case α1 = α2 = · · · = αn = 0. Put another way, if the only way to get the vectors
v1, . . . ,vn to add up to zero is to multiply them all by 0, then they are linearly independent.

Example 30.23. The vectors ⟨1, 1⟩ and ⟨−1, 1⟩ are linearly independent. To see this let’s
solve for α1 and α2 so that:

α1

[
1
1

]
+ α2

[
−1
1

]
=

[
0
0

]
.

This yields a system of equations:

α1 − α2 = 0

α1 + α2 = 0

We can see immediately that the only solution is α1 = α2 = 0. Thus the vectors are linearly
independent. Vectors that are not linearly independent are called linearly dependent.

3. Determinants (Algebraically & Geometrically)

Definition 30.24 (Permutation). A permutation on the set {1, . . . , n} is a function σ :
{1, . . . , n} → {1, . . . , n}. That is a permutation is just a way to mix the order of the
sequence 1, 2, . . . , n.

Example 30.25. There are 11 players on a cricket team. If we number the players 1, . . . , 11,
the order in which those 11 players bat is a permutation.

We might also consider a simple permutation on {1, 2, 3} as:

σ =
1 2 3
↓ ↓ ↓
2 3 1.

Thus σ(1) = 2, σ(2) = 3 and σ(3) = 1.
The identify permutation σid the permutation with σid(k) = k for all k ∈ {1, . . . , n}.

Definition 30.26 (Transposition). A transposition σij on {1, . . . , n} is a permutation that
so that σ(i) = j and σ(j) = i and σ(k) = k if k ̸= i and k ̸= j. Thus it transposes i and j.
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Theorem 30.27. Any permutation σ can be written as a composition of transpositions.
Furthermore the parity (even or oddness) of the number of those compositions is unique and
denoted sgn(σ) ∈ {−1, 1} with sgn(σ) = 1 if and only if the number of compositions used is
even. □

Remark 30.28. The set of all permutations on the set {1, . . . , n} is denoted Sn. The proof
of the previous theorem is is covered in a course on abstract algebra or possibly a course
on discrete mathematics. It is too far outside the scope of this course, but is relatively
straightforward.

Definition 30.29 (Determinant). Let M ∈ Rn×n. The determinant of M is:

(30.6) det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aiσ(i)

Here σ ∈ Sn represents a permutation over the set {1, . . . , n} and σ(i) represents the value
to which i is mapped under σ.

Example 30.30. Consider an arbitrary 2× 2 matrix:

M =

[
a b
c d

]
There are only two permutations in the set S2: the identity permutation σid (which is even)
and the transposition σ with σ(1) = 2 and σ(2) = 1, which is odd. Thus, we have:

det(M) =

∣∣∣∣a b
c d

∣∣∣∣ = M11M22 −M12M21 = ad− bc

This is the formula that one would expect from a course in matrices (like Math 220).

Remark 30.31. There is another way to think of a determinant, which does not require
any algebra.

Definition 30.32 (Determinant). Let M ∈ Rn×n. The determinant of M is a mapping det :
M 7→ V , where V is the signed volume of the n-dimensional parallelpiped (parallelogram)
formed by the rows of M. Here signed volume just means that the volume may be negative
depending on the location of the vectors in space.

Remark 30.33. If the rows of M do not form an n-dimensional shape, then the volume is
0.

Example 30.34. We can construct a formula for the determinant of a 2 × 2 matrix using
only analytic geometry. Consider the matrix:

M =

[
a b
c d

]
.

The row vectors and the corresponding parallelogram formed by the rows are shown in
Fig. 30.1. The area can be determined by finding the distance from the point (a + c, b+ d)
that results from adding the vectors to the line extending from the vector ⟨c, d⟩. The formula
for distance from the point (x0, y0) to the line determined by two points (x1, y1) and (x2, y2)
is given by:

l =
|(x2 − x1)(y1 − y0)− (x1 − x0)(y2 − y1)|√

(x2 − x1)2 + (y2 − y1)2
.
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Figure 30.1. The determinant of the matrix is the area of the parallelogram
formed by the row vectors, which can be determined from analytic geometry.

Using (x0, y0) = (a + c, b + d), (x1, y1) = (0, 0) and (x2, y2) = (c, d) yields the (signed)
distance:

l2 =
ad− bc√
c2 + d2

.

This is the height of the parallelogram. The width of the parallelogram is l1 =
√
c2 + d2.

Thus the area of the parallelogram is:

det(M) = A = l1l2 = ad− bc.

Remark 30.35. There are formulas for finding determinants of larger matrices, but we will
not consider matrices beyond 3×3. A course in Linear Algebra should discuss these methods.
For a 3× 3 matrix, the formula is:∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = (a11a22a33 + a12a23a31 + a13a21a32)−(a13a22a31 + a12a21a33 + a11a23a32) .

This formula can be recovered using the following memory trick:

a23
a32 a33

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ a21a31 a32

where you add the product of left-to-right diagonals and subtract the product of right-to-left
diagonals.

Example 30.36. It’s worth noting that a set of vectors v1, . . . ,vn is linearly independent
if and only if the determinant of the matrix with these vectors as columns (or rows) is non-
zero if and only if the matrix is invertible. This makes much more sense from the geometric
perspective. This can be illustrated with the vectors ⟨1, 1⟩ and ⟨−1, 1⟩, which we already
know are linearly independent. Note:∣∣∣∣1 −1

1 1

∣∣∣∣ = 1(1)− (−1)(1) = 2 ̸= 0.
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The fact that the matrix is invertible follows from the fact:[
1 −1
1 1

]−1

=

[
1
2

1
2

−1
2

1
2

]
,

which can be checked by multiplication.

4. Eigenvalues and Eigenvectors

Definition 30.37 (Eigenvalue and (Right) Eigenvector). Let M ∈ Rn×n. An eigenvalue,
eigenvector pair (λ,x) is a scalar and n× 1 vector such that:

(30.7) Mx = λx

Remark 30.38. A left eigenvector is defined analogously with xTM = λxT , when x is
considered a column vector. We will deal exclusively with right eigenvectors and hence when
we say “eigenvector” we mean a right eigenvector.

Definition 30.39 (Characteristic Polynomial). If M ∈ Rn×n then its characteristic polyno-
mial is:

(30.8) det (λIn −M)

Remark 30.40. The following theorem is useful for computing eigenvalues of small matrices
and defines the characteristic polynomial for a matrix.

Theorem 30.41. A value λ is an eigenvalue for M ∈ Rn×n if and only if it satisfies the
characteristic equation:

det (λIn −M) = 0

Furthermore, M and MT share eigenvalues. □

Example 30.42. Consider the matrix:

M =

[
1 0
0 2

]
The characteristic polynomial is computed as:

det (λIn −M) =

∣∣∣∣λ− 1 0
0 λ− 2

∣∣∣∣ = (λ− 1)(λ− 2)− 0 = 0

Thus the characteristic polynomial for this matrix is:

(30.9) λ2 − 3λ+ 2

The roots of this polynomial are λ1 = 1 and λ2 = 2. Using these eigenvalues, we can compute
eigenvectors:

x1 =

[
1
0

]
(30.10)

x2 =

[
0
1

]
(30.11)

and observe that:

(30.12) Mx1 =

[
1 0
0 2

] [
1
0

]
= 1

[
1
0

]
= λ1x1
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and

(30.13) Mx2 =

[
1 0
0 2

] [
0
1

]
= 2

[
0
1

]
λ2x2

as required.

Example 30.43. Computing eigenvalues and eigenvectors by hand requires solving a system
of linear equations with an infinite number of solutions. We illustrate the procedure on a
2× 2 matrix:

A =

[
2 1
1 2

]
.

First we find the characteristic equation:

det(λI−A) =

∣∣∣∣λ− 2 −1
−1 λ− 2

∣∣∣∣ = (λ− 2)2 − 1 = 0.

Solving for λ yields: λ = 3 or λ = 1. These are the two eigenvalues. We then seek a vector
x = ⟨x1, x2⟩ so that:

Ax = λx =⇒ (λI−A)x = 0.

This yields the equation:[
λ− 2 −1
−1 λ− 2

] [
x1
x2

]
=

[
0
0

]
.

Substituting λ = 3 we have the system of equations:

x1 − x2 = 0

−x1 + x2 = 0

These are the same equation, so we must make one variable a free variable. Say it’s x2 and
we let x2 = t (where t stands for any real number). Then we see that x1 = x2 and so
x1 = x2 = t. The result is:[

x1
x2

]
=

[
t
t

]
= t

[
1
1

]
.

We have just deduced that the eigenvector for the eigenvalue λ = 3 is:

x =

[
1
1

]
is an eigenvector. You can scale this eigenvector anyway you want. So for example if you
scale the eigenvector so it has unit norm (length) we would write:

x̂ =
x

∥x∥
=

1√
2

[
1
1

]
=

[ 1√
2
1√
2

]
.

This is because ∥x∥ =
√
12 + 12 =

√
2.

If we do the same process for λ = 1 we obtain the system of equations:

−x1 − x2 = 0

−x1 − x2 = 0
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Again, letting x2 = t we see that x1 = −t and therefore:[
x1
x2

]
=

[
−t
t

]
= t

[
−1
1

]
.

Thus the eigenvector for the eigenvalue λ = 1 is:

x =

[
−1
1

]
,

which can again be scaled in anyway that is convenient.

Remark 30.44. It is important to remember that eigenvectors are unique up to scale. That
is, if M is a square matrix and (λ,x) is an eigenvalue eigenvector pair for M, then so is
(λ, αx) for α ̸= 0. This is because:

(30.14) Mx = λx =⇒ M(αx) = λ(αx)

Remark 30.45. You can use your calculator to find the eigenvalues and eigenvectors of a
matrix, as well as several software packages, like Matlab and Mathematica.

Definition 30.46 (Degenerate Eigenvalue & Multiplicity). An eigenvalue is degenerate if
it is a multiple root of the characteristic polynomial. The multiplicity of the root is the
algebraic multiplicity of the eigenvalue. The geometric multiplicity of the eigenvalue is the
number of eigenvectors it has.

Example 30.47. Consider the identify matrix I2. It has characteristic polynomial (λ− 1)2,
which has one multiple root 1. Thus λ = 1 is a degenerate eigenvalue for this matrix. How-
ever, this matrix does have two eigenvectors ⟨1, 0⟩ and ⟨0, 1⟩. Thus the algebraic multiplicity
of λ = 1 is 1, but the geometric multiplicity is 2.



LESSON 31

1. Linear Systems of ODE’s

Remark 31.1. Recall Definition 1.26: A system of ordinary differential equations is a set
of equations involving involving a set of unknown functions y1,. . . ,yn and their derivatives
each a function of one independent variable.

Remark 31.2. Before going on, it is worth noting that any order n differential equation can
be transformed to an equivalent order n − 1 system of differential equations. We illustrate
this with a second order ODE:

(31.1) ÿ + aẏ + bẏ = f(t)

Define v = ẏ. Then the equation becomes v̇ + av + by = f(t). We can then write a system
of differential equations:

(31.2)

{
v̇ = −av − by + f(t)

ẏ = v

By repeating this process, any order n differential equation can be written as a system of
first order differential equations.

Remark 31.3 (Linear Homogeneous System). Let A(t) be a matrix function of time so:

A(t) =

a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)


and let b(t) be an n × 1 vector valued function. Then a linear first order system can be
written as:

ẏ = A(t)y + b(t),

in the most general case. This is totally analogous to the first order ODE:

y′ + p(t)y = q(t)

that we studied in the beginning of the semester. When b(t) = 0, we have the linear
homogeneous system:

ẏ = A(t)y.

Linear systems can be solved, but the solution is outside the scope of the course.

167
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2. Linear Homogeneous Systems with Constant Coefficients

Definition 31.4 (Linear Homogeneous System with Constant Coefficients). A linear homo-
geneous system with constant coefficients has form:

ẏ = Ay,

where A ∈ Rn×n. We assume that the rows (columns) of A are linearly independent.

Example 31.5. Consider the damped harmonic oscillator:

ẍ+ bẋ+ kx = 0.

Let ẋ = v. Then the corresponding first order system is:

ẋ = v

v̇ = −kx− bv.

This can be written as:[
ẋ
v̇

]
=

[
0 1
−k −b

] [
x
v

]
Recall that that characteristic equation of the second order ODE is:

s2 + bs+ k = 0.

If we find the characteristic polynomial of the matrix defining the equivalent system of ODE’s
we see: ∣∣∣∣λ −1

k λ+ b

∣∣∣∣ = λ(λ+ b) + k = λ2 + bλ+ k.

Thus the characteristic polynomial of the matrix is the same as the characteristic equation
of the second order ODE. This is not an accident. We will see that the eigenvalues govern
the solution of the system of ODE’s.

Remark 31.6. Inspired by Lemma 16.14 we make the following definition.

Definition 31.7. Let A ∈ Rn×n. Then:

eA = exp(A) = I+A+
1

2!
A2 + · · · =

∞∑
n=0

1

n!
An.

Here I is an n× n identity matrix. Consequently:

(31.3) eAt = exp(At) =
∞∑
n=0

1

n!
Antn.

Remark 31.8. We cannot formally prove the next lemma because it relies on certain facts
from analysis about the uniform convergence of partial sums of Eq. (31.3), but nonetheless
the approach is valid.

Theorem 31.9. The following derivative is valid:

d

dt
eAt = AeAt.

Consequently, x(t) = eAtx0 solves the IVP:

ẋ = Ax x(0) = x0.
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Proof. Begin by differentiating eAt term-by-term to see:

d

dt
eAt =

d

dt

(
∞∑
n=0

1

n!
Antn

)
=

∞∑
n=0

d

dt

1

n!
Antn =

∞∑
n=1

n

n!
Antn−1 =

∞∑
n=1

A

(
1

(n− 1)!
An−1tn−1

)
= A

(
∞∑
n=1

1

(n− 1)!
An−1tn−1

)
=

A

(
∞∑
n=0

1

n!
Antn

)
= AeAt.

This establishes that exp(At) solves ẋ = Ax. Notice that when t = 0, we have exp(0) = I,
the identity matrix. Consequently:

eAtx0

∣∣
t=0

= Ix0 = x0.

Thus x(t) = eAtx0 solves the IVP. □

Remark 31.10. We need to find a way to compute eAt for a given matrix A. We will
discuss this in general, but then focus explicitly on the case when A is 2 × 2 because it is
computationally simpler.

3. Diagonalization and Jordan’s Decomposition Theorem

Definition 31.11 (Diagonalization). Let A be an n × n matrix with entries from field R.
The matrix A can be diagonalized if there exists an n × n diagonal matrix D and another
n× n matrix P so that:

(31.4) P−1AP = D

In this case, P−1AP is the diagonalization of A.

Remark 31.12. Clearly if A is diagonalizable, then:

(31.5) A = PDP−1

Theorem 31.13. A matrix A ∈ Rn×n is diagonalizable, if and only if the matrix has n
(linearly independent) eigenvectors. □

Remark 31.14. The proof of the theorem gives the recipe for diagonalizing a matrix.

Proof. Suppose that A has a set of linearly independent eigenvectors p1, . . . ,pn. Then
for each pi, (i = 1, . . . , n) there is an eigenvalue λi so that Api = λipi. Let P ∈ Cn×n have
columns p1, . . . ,pn. Then we can see that:

AP =
[
λ1p1| · · · |λnpn

]
=
[
p1| · · · |pn

] 
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . · · ·

0 0 · · · λn

 = PD,

where:

(31.6) D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . · · ·

0 0 · · · λn
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Since p1, . . . ,pn are linearly independent, it follows P is invertible and thus A = PDP−1.
Conversely, suppose that A is invertible and let D be as in Equation 31.6. Then:

AP = DP

and reversing the reasoning above, each column of P must be an eigenvector of A with
corresponding eigenvalue on the diagonal of D. □

Example 31.15. Consider the following matrix:

(31.7) A =

[
0 −1
1 0

]
To diagonalize A, we compute its eigenvalues and eigenvectors. The eigenvalues are com-
puted as:∣∣∣∣ λ 1

−1 λ

∣∣∣∣ = λ2 + 1 = 0.

The two eigenvalues are: λ = ±i. To compute the eigenvectors we must solve:

(λI−A)p =

[
λ 1
−1 λ

] [
p1
p2

]
=

[
0
0

]
.

When λ = i this yields the equations:

ip1 + p2 = 0

−p1 + ip2 = 0

These equations are linearly dependent (multiply the first by i to recover the second). From
the first equation we have p2 = −ip1. Let p1 = t and we see:[

p1
p2

]
= t

[
1
−i

]
.

Thus the eigenvector corresponding to λ = i is:

p1 =

[
1
−i

]
.

On the other hand when λ = −i we have the two equations

−ip1 + p2 = 0

−p1 − ip2 = 0

Again, these equations are linearly dependent (multiply the first by −i to recover the second).
From the first equation we have p2 = ip1. Let p1 = t and we see:[

p1
p2

]
= t

[
1
i

]
.

Thus the eigenvector corresponding to λ = i is:

p2 =

[
1
i

]
.

We can now compute P and D as:

D =

[
−i 0
0 i

]
P =

[
1 1
i −i

]
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It is helpful to note that:

P−1 =

[
1
2

− i
2

1
2

i
2

]
Arithmetic manipulation shows us that:

PD =

[
−i i
1 1

]
Thus:

PDP−1 =

[
−i i
1 1

] [
1
2

− i
2

1
2

i
2

]
=

[
0 −1
1 0

]
,

as required.





LESSON 32

1. Computing Matrix Exponents

Lemma 32.1. Let D ∈ Rn×n be a diagonal matrix with:

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λn

 ,
then:

(32.1) Dk =


λk1 0 0 · · · 0
0 λk2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λkn


Proof. Note that:

D2 =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λn



λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λn

 =


λ21 0 0 · · · 0
0 λ22 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λ2n

 .
Now assume the Eq. (32.1) holds up to k − 1. Then:

Dk = Dk−1D =


λk−1
1 0 0 · · · 0
0 λk−1

2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λk−1
n



λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λn

 =


λk1 0 0 · · · 0
0 λk2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λkn

 .
The result follows by induction. □

Theorem 32.2. Suppose A is diagonalizable and

A = PDP−1

Then

(32.2) exp(At) = P exp(Dt)P−1
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and if:

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · λn


then:

eDt =


eλ1t 0 0 · · · 0
0 eλ2t 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · eλnt


Proof. Note that:

(32.3) Antn =
(
PDtP−1

)n
= (PDtP−1)(PDtP−1) · · · (PDtP−1) = P(Dt)nP−1

Using Definition 31.7 and the preceding equation we deduce that:

∞∑
n=0

Antn

n!
= P

(
∞∑
n=0

Dntn

n!

)
P−1.

Now applying Lemma 32.1 and adding componentwise we see that there will be an infinite
sum (that defines the exponential) along the diagonal elements. Thus:

eDt =
∞∑
n=0

Dntn

n!
=


eλ1t 0 0 · · · 0
0 eλ2t 0 · · · 0
...

...
. . . · · · ...

0 0 0 · · · eλnt

 .
□

Theorem 32.3. If A is diagonalizable and A = PDP−1, then the solution to the linear
homogeneous system:

ẋ = Ax x(0) = x0

is:

(32.4) x(t) = PeDtP−1x0.

Remark 32.4. We will return to the case when a nilpotent matrix arises in the Jordan
decomposition when we need it.

2. Solving 2× 2 Systems with Two Distinct Real Eigenvalues

Derivation 32.5. Practically speaking, if we apply Eq. (32.4) to a 2 × 2 matrix that the
solution has form:

x(t) = C1p1e
λ1t + C2p2e

λ2t,

where p1 and p2 are the two distinct eigenvectors of the matrix A. The values of C1 can
be determined from the initial conditions without inverting the matrix P (though you are
certainly free to do so). In the case when λ1 ̸= λ2 are real, this is the end of the story.
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Example 32.6. Consider the linear system:

ẋ = x+ 2y

ẏ = 2x+ y.

The matrix for this system is:

A =

[
1 2
2 1

]
.

To find the eigenvalues we solve:∣∣∣∣λ− 1 −2
−2 λ− 1

∣∣∣∣ = (λ− 1)2 − 4 = 0.

We see that λ = 3 and λ = −1 are eigenvalues. To find the eigenvectors we take each
eigenvalue in turn.

Case λ = 3: We solve:

(λI−A)p =

[
3− 1 −2
−2 3− 1

] [
p1
p2

]
=

[
0
0

]
.

The two equations are:

2p1 − 2p2 = 0

−2p1 + 2p2 = 0

So p1 = p2 and we can set p1 = t. Then:[
p1
p2

]
= t

[
1
1

]
and the first eigenvector is:

p1 =

[
1
1

]
.

Case λ = −1: We solve:

(λI−A)p =

[
−1− 1 −2
−2 −1− 1

] [
p1
p2

]
=

[
0
0

]
.

The two equations are:

−2p1 − 2p2 = 0

−2p1 − 2p2 = 0

So p2 = −p1 and we can set p1 = t. Then:[
p1
p2

]
= t

[
1
−1

]
and the second eigenvector is:

p2 =

[
1
−1

]
.
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Solution: The solution is then:[
x(t)
y(t)

]
= C1

[
1
1

]
e3t + C2

[
1
−1

]
e−t.

If we are given x(0) = 2 and y(0) = 0, then we would solve:

C1 + C2 = 2

C1 − C2 = 0

and we conclude that C1 = C2 = 1. You can verify this by computing:

P−1 =

[
1 1
1 −1

]
=

[
1
2

1
2

1
2

−1
2

]
and using Eq. (32.4).



LESSON 33

1. Solving 2× 2 Systems with Two Complex Eigenvalues

Remark 33.1. We can do a bit more analysis when the eigenvalues are complex. This can
help avoid doing a lot of complex arithmetic and also illustrates the nature of the solutions.

Lemma 33.2. If A ∈ Rn×n is a real matrix with complex eigenvalue λ and corresponding
complex eigenvector p, then λ̄ and p̄ (complex conjugates) are also an eigenvalue/eigenvector
pair.

Proof. Notice that:

Ap = λp,

which implies that:

Āp̄ = λ̄p̄ = Ap̄ = λ̄p̄,

because A is real and the conjugation operation distributes over multiplication (which you
can check). Thus λ̄ is an eigenvalue and p̄ is its eigenvector. □

Corollary 33.3. If A ∈ R2×2 has a complex eigenvalue λ with (complex) eigenvector p,
then its other eigenvector is λ̄ with corresponding eigenvector p̄. □

Derivation 33.4. Suppose:

A =

[
a b
c d

]
and this has two complex eigenvalues λ+ µi and λ− µi. The two corresponding eigenvalues
must be conjugate as we have:

p1 =

[
r1 + s1i
r2 + s2i

]
p2 =

[
r1 − s1i
r2 − s2i

]
.

Then:

P =

[
r1 + s1i r1 − s1i
r2 + s2i r2 − s2i

]
P−1 =

1

2i

1

r2s1 − r1s2

[
r2 − s2i −r1 + s1i
−r2 − s2i r1 + s1i

]
.

Notice that 1/i = −i because i(−i) = 1. So we can write this as:

P−1 =
1

2(r2s1 − r1s2)

[
−r2i− s2 r1i+ s1
r2i− s2 −r1i+ s1

]
We know that:

eDt =

[
e(λ+µi)t 0

0 e(λ−µi)t

]
= eλt

[
cos(µt) + i sin(µt) 0

0 cos(µt)− i sin(µt)

]
177
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We can now compute the solution to:[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
We have:[

x
y

]
= PeDtP−1 =

eλt

2D

[
2B sin(µt) + 2D cos(µt) −2l1 sin(µt)

2l2 sin(µt) 2D cos(µt)− 2B sin(µt)

] [
x0
y0

]
,

where:

l1 = r21 + s21

l2 = r22 + s22
D = r2s1 − r1s2

B = r1r2 + s1s2.

Simplifying we conclude:[
x
y

]
=
eλt

D

[
sin(µt) (x0B − y0l1) + x0D cos(µt)
sin(µt) (x0l2 − y0B) + y0D cos(µt)

]
.

Notice this is a real-valued solution. We now have the following theorem.

Theorem 33.5. Consider the system of ordinary differential equations:

ẋ = ax+ by

ẏ = cx+ dy

and suppose that the system has two complex eigenvalues λ ± µi with corresponding eigen-
vectors:

p1,2 =

[
r1 ± s1i
r2 ± s2i

]
Then the general solution is given by:

x(t) =
eλt

D
{C1 [D cos(µt) +B sin(µt)]− C2l1 sin(µt)}

y(t) =
eλt

D
{C2 [D cos(µt)−B sin(µt)] + C1l2 sin(µt)} ,

where:

l1 = r21 + s21

l2 = r22 + s22
D = r2s1 − r1s2

B = r1r2 + s1s2.

□

Remark 33.6. Other texts will give a slightly simpler formulation in terms of the real and
imaginary parts of the solution derived from one of the eigenvectors. This is equivalent but
then requires an analysis with the Wronskian:

W (X) = det ([x1, . . . ,xn]) ,
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where x1, . . . ,xn are distinct vector valued solutions. Since we have solved the ODE explicitly
(and for all cases) using the matrix exponential, this analysis is not needed. For the simpler
formula, see Theorem 36.4.

Example 33.7. Reconsider the harmonic oscillator as a system:

ẋ = v

v̇ = −ω2x

This has matrix:

A =

[
0 1

−ω2 0

]
Of course this leads to the characteristic equation λ2 = −ω2 and two complex eigenvalues
λ = ±iω. We can solve for one of the eigenvectors by solving:

(λI−A)p = 0,

or [
iω −1
ω2 iω

] [
p1
p2

]
=

[
0
0

]
We have the two equations:

iωp1 − p2 = 0

ω2p1 + iωp2 = 0

The first equation can be converted into the second equation by multiplying by −iω; they
are linearly dependent. Then from the first equation we see:

p2 = iωp1.

Let p1 = t we have the solution:[
p1
p2

]
= t

[
1
iω

]
.

Then we know the two eigenvectors must be:

p1 =

[
1
iω

]
p2 =

[
1

−iω

]
So from our theorem we have r1 = 1 and s1 = 0 and r2 = 0 and s2 = ω. We can compute:

l1 = 1

l2 = ω2

D = −ω
B = 0.

The eigenvalue is purely imaginary so we have no exponential term. Assume x(0) = x0 and
v(0) = v0. Then the solution to the ODE is:

x(t) =
1

ω
[x0ω cos(ωt) + v0 sin(ωt)]

v(t) =
1

ω

[
v0ω cos(ωt)− x0ω

2 sin(ωt)
]
.
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Note we have simplified some signs in the above solution.



LESSON 34

1. Solving 2× 2 Systems with only One Eigenvector and a Repeated Eigenvalue

Remark 34.1. Wemust go back to dealing with the case when a matrix is not diagonalizable.
This will happen when an eigenvalue has arithmetic multiplicity 2 and geometric multiplicity
1. To do this, we introduce a generalization of diagonalizing a matrix.

Definition 34.2 (Nilpotent Matrix). A matrix N is nilpotent if there is some integer k > 0
so that Nk = 0

Example 34.3. The matrix:

N =

[
0 1
0 0

]
is nilpotent. To see this compute:

N2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]

Remark 34.4. We generalize the notion of diagonalization in a concept called the Jordan
Normal Form. The proof of the Jordan Normal Form theorem is outside the scope of the
class, but it can be summarized in the following theorem. See [Lan12] for details.

Theorem 34.5. Let A be a square matrix with complex entries (i.e., A ∈ Cn×n). Then
there exists matrices P, D and N so that: (1) D is a diagonal matrix with the eigenvalues
of A appearing on the diagonal. (2) N is a nilpotent matrix and (3) P is a matrix whose
columns are composed of pseudo-eigenvectors and (4):

(34.1) A = P(D+N)P−1,

When A is diagonalizable, then N = 0 and P is a matrix whose columns are composed of
eigenvectors.

Derivation 34.6. When A ∈ Rn×n is not diagonalizable, we use Theorem 34.5 to compute
eAt. Recall:

A = P (D+N)P−1,

where N is a nilpotent matrix and D is a matrix with eigenvalues on the diagonal. Applying
the same reasoning as in the proof of Theorem 32.2 we see that:

eAt = Pe(D+N)tP−1.

Now:

e(D+N)t = eDteNt.

181
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We already know what eDt from Theorem 32.2. To compute eNt we use Definition 31.7:

exp(Nt) =
∞∑

m=0

Nmtm

m!
.

Since N is nilpotent, we know there is a k so that Nk = 0. Thus if m ≥ k, Nm = 0 and the
infinite sum becomes a finite sum:

exp(Nt) =
k∑

m=0

Nmtm

m!
.

We conclude that the solution to:

ẋ = Ax x(0) = x0

is:

x(t) = P exp (Dt)

(
k∑

m=0

Nmtm

m!

)
P−1 · x0,

when A is not diagonalizable. In particular, this means that we expect to see polynomials
in t appearing multiplied by exponentials in the solution.

Derivation 34.7. In the case of a 2×2 homogeneous linear system with an eigenvalue with
algebraic multiplicity 2 (repeated root) and geometric multiplicity 1 (one eigenvector) we
always have:

N =

[
0 1
0 0

]
.

This fact comes out of the proof of Jordan Canonical Form, so it’s outside the scope of the
notes. Since we know N2 = 0 from Example 34.3, we conclude that:

eNt = I+ tN =

[
1 t
0 1

]
.

If λ is the repeated eigenvalue, we know that:

eDt =

[
eλt 0
0 eλt

]
,

so:

eDteNt =

[
eλt 0
0 eλt

] [
1 t
0 1

]
=

[
eλt teλt

0 eλt.

]
It is now simply a matter of finding P. If p1 is the eigenvector corresponding to λ, that will
be the first column of P. The question of how to find the second column is (fortunately or
unfortunately) also answered in the proof of the Jordan theorem. For us it suffices to solve:

(A− λI)p2 = p1.

Notice, this is different in sign from how we’ve been finding eigenvectors. This sign difference
doesn’t matter for eigenvectors (when the right hand side is zero) but it does matter here.

There will be an infinite number of solutions to this problem and it’s best to take the
simplest possible one. Just as in Derivation 32.5, we can multiply PeDteNt and use constants
to see that the general solution can be written as:

x = C1p1e
λt + C2

(
p1te

λt + p2e
λt
)
,
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for arbitrary constants C1 and C2.

Example 34.8. Consider the following linear system of differential equations1:

ẋ = 7x+ y

ẏ = −4x+ 3y

The matrix is:

A =

[
7 1
−4 3

]
We compute:∣∣∣∣λ− 7 −1

4 λ− 3

∣∣∣∣ = (λ− 7)(λ− 3) + 4 = λ2 − 10λ+ 25 = (λ− 5)2 = 0.

The eigenvalue in question is λ = 5 and it has algebraic multiplicity 2. Let us find its
eigenvetor(s). We compute:

(λI −A)p =

[
−2 −1
4 2

] [
p1
p2

]
=

[
0
0

]
We conclude that:

−2p1 − p2 = 0

This implies p2 = −2p1 and if p1 = t yields the solution:[
p1
p2

]
= t

[
1
−2

]
,

so the eigenvector is:

p =

[
1
−2

]
.

We can find no other eigenvector for this eigenvalue. So we must find a pseudo-eigenvector
by solving:

(A− λI)p2 = p1.

This leads to the equation:[
2 1
−4 −2

] [
p1
p2

]
=

[
1
−2

]
We now have the two equations:

2p1 + p2 = 1

− 4p1 − 2p2 = −2.

These equations are linearly dependent so letting p2 = t and using the first equation yields:

2p1 = −t+ 1 =⇒ p1 =
1

2
− t

2
.

1This example is taken from http://tutorial.math.lamar.edu/Classes/DE/RepeatedEigenvalues.

aspx, where it is presented differently.

http://tutorial.math.lamar.edu/Classes/DE/RepeatedEigenvalues.aspx
http://tutorial.math.lamar.edu/Classes/DE/RepeatedEigenvalues.aspx
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We can write:

p2 =

[
1
2
0

]
+ t

[
−1

2
1

]
.

Now we pick the easy solution and set t = 0. We obtain the matrix:

P =

[
1 1

2
−2 0

]
,

and our solution is:[
x(t)
y(t)

]
= C1

[
1
−2

]
e5t + C2

([
1
2
0

]
e5t +

[
1
−2

]
te5t
)
.

Now suppose x(0) = 2 and y(0) = −5. Then:

C1

[
1
−2

]
+ C2

[
1
2
0

]
=

[
2
−5

]
.

We have the equation system:

C1 +
1
2
C2 = 2

− 2C1 = −5

Thus C1 =
5
2
and C2 = −1. Multiplying out solution is:

x(t) = 2e5t − te5t

y(t) = −5e5t + 2te5t.

Remark 34.9. It is worth nothing that

P−1 =

[
0 −1

2
2 1

]
,

and as we expect:[
1 1

2
−2 0

] [
5 1
0 5

] [
0 −1

2
2 1

]
=

[
7 1
−4 3

]
.

However there is an additional step to choosing the correct psuedo-eigenvector representation
to make this happen. That is, when we happily set t = 0 in finding p2 in the previous
example, that was designed to make sure the Jordan form resulted. The arbitrary constants
C1 and C2 always clean up any mess made by selecting a different pseudo-eigenvector in the
differential equations. However, if you check for another problem you may find the Jordan
theorem fails for your choice of pseudo-eigenvector. This does not mean you’re wrong, it
means you need to choose a different version of that pseudo-eigenvector.



LESSON 35

1. Fixed Points

Remark 35.1. We return (momentarily) to a more general autonomous system of differential
equations:

ẋ1 = f1(x1, . . . , xn)

...

ẋn = fn(x1, . . . , xn),

which can be written more compactly as:

(35.1) ẋ = F(x),

where F : Rn → Rn is a vector valued function of a vector of inputs.

Definition 35.2 (Fixed Points). Consider the system of differential equations given by
Expression 35.1. A vector x∗ ∈ Rn is a fixed or equilibrium point of Expression 35.1 if
F(x∗) = 0.

Remark 35.3. The notions of fixed point stability that we studied in Lesson 6, Section 2
carry over with absolute values replaced by vector norms, since both the dependent and
independent variables are now presented in vector form. For example, a fixed point x∗ is
stable if for all ϵ > 0 there is a δ > 0 so that when ∥x0 − x∗∥ < δ, then ∥x(t)− x∗∥ < ϵ for
all t ≥ 0. Here x(t) is a solution to the system of differential equations.

Proposition 35.4. If A ∈ Rn×n is a matrix with linearly independent rows (or columns),
then the linear homogeneous (autonomous) system:

ẋ = Ax,

has one fixed point x∗ = 0.

Remark 35.5. The stability of this single fixed point is completely characterized by the
eigenvalues of the system and there are only (effectively) four qualitative behaviors that can
be exhibited by solutions to a linear homogeneous system. However, most text break these
up into six classifications. These are best understood geometrically.

2. Phase Portraits of Linear Systems

Definition 35.6 (Phase Portrait). Consider System 35.1:

F(x) =

f1(x1, . . . , xn)...
fn(x1, . . . , xn)
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and suppose we have a general solution x1(t;x
0
1), . . .xn(t;x

0
n), parameterized by the initial

values x01, . . . , x
0
n. (That is, suppose we have a specific orbit.) Then a phase portrait is a

geometric representation of the behavior of the differential equation system obtained by cre-
ating multiple parametric curves (x1(t;x

0
1), . . . xn(t;x

0
n) for various starting values x01, . . . , x

0
n;

i.e., We are visualizing multiple orbits of the system.

Remark 35.7. It is worth noting that some people consider the phase portrait to be the
vector field obtained from the differential system. So at any point x1, . . . , xn ∈ Rn, the
vector: f1(x1, . . . , xn)...

fn(x1, . . . , xn)


is computed and displayed with some appropriate scaling (so that enormous vectors do not
distort the visual effect.) In either case, it is worth letting a computer draw the phase
portrait for you.

Example 35.8 (Phase Portraits of Linear Systems - Sink and Source). Consider the linear
system:

ẋ = Ax

A sink occurs when A has two negative real eigenvalues, while a source occurs when A
has two real positive eigenvalues. These are illustrated in Fig. 35.1. In a sink the fixed point

Figure 35.1. (Left) A sink occurs where there are two real negative eigen-
values. The eigenvectors (shown in black) for the system form a non-
perpendicular axis that the flow follows near the fixed point. (Right) A source
occurs where there are two real positive eigenvalues. The eigenvectors (shown
in black) for the system form a non-orthogonal axis that the flow follows near
the fixed point.

x = 0 is asymptotically stable while in a source it is asymptotically unstable. Flow follows
the system’s eigenvectors, which act like a non-orthogonal (non-perpendicular) axis.
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Example 35.9 (Phase Portraits of Linear Systems - Spiral Sink and Spiral Source). A
spiral sink occurs when A has two complex eigenvalues with negative real part, while a
spiral source occurs when A has two complex eigenvalues with positive real part. These
are illustrated in Fig. 35.2. In a spiral sink the fixed point x = 0 is asymptotically stable

Figure 35.2. (Left) A spiral sink occurs where there are two complex eigen-
values with negative real part. (Right) A spiral source occurs where there are
two complex eigenvalues both with positive real part.

while in a spiral source it is asymptotically unstable. Notice we have not shown the system
eigenvectors because they do not play as large a role in the flow direction. This mirrors our
analysis where we used the (complex) eigenvectors but they do not appear explicitly in the
solution as they do in the other cases.

Example 35.10 (Phase Portraits of Linear Systems - Saddle and Center). A saddle occurs
when A has two real eigenvalues that are opposite in sign (i.e., one positive and one negative
eigenvalue) while a center occurs when the two eigenvalues are both pure imaginary (have
zero real part). This is illustrated in Fig. 35.3. In a saddle, the fixed point x = 0 is
unstable, but not asymptotically unstable. In a center, the fixed point x = 0 is stable but
asymptotically stable.

Remark 35.11. Despite the different names, we can see there are really four behaviors:

(1) The fixed point x = 0 can be asymptotically stable.
(2) The fixed point x = 0 can be asymptotically unstable.
(3) The fixed point x = 0 can be a saddle (unstable).
(4) The fixed point x = 0 can be a center (stable).

These are the four possible qualitative behaviors for the fixed point in a linear system. Some
texts call a fixed point that is a center an elliptic fixed point and all other fixed points
hyperbolic fixed points. This extends to nonlinear systems as well.

Remark 35.12. We can summarize the possible behaviors with a theorem whose proof
(in two dimensions) follows from our constructed solutions. However, using Eq. (32.4) and
Derivation 34.6 the proof can be extended to all first order linear systems.
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Figure 35.3. (Left) A saddle occurs where there are two real eigenvalues
with opposite sign. The eigenvectors (shown in black) for the system form a
non-perpendicular axis that the flow follows near the fixed point. (Right) A
center occurs when both eigenvalues are pure imaginary numbers.

Theorem 35.13. Consider the linear homogeneous sytem:

ẋ = Ax.

The following hold:

(1) The fixed point x = 0 is asymptotically stable if all the eigenvalues of A have
negative real part.

(2) The fixed point x = 0 is asymptotically unstable if all the eigenvalues of A have
positive real part.

(3) The fixed point x = 0 is an (unstable) saddle if the real parts of the eigenvalues of
A have mixed sign. (In the two-dimensional case, these will be two real eigenvalues
of opposite sign.)

(4) The fixed point x = 0 is a stable center if all the eigenvalues of A are imaginary or
zero.

□

Example 35.14. It is worth asking what the phase portrait looks like when there is only
one real eigenvalue. This is illustrated for the system:

ẋ = 7x+ y

ẏ = −4x+ 3y,

which we studied in Example 34.8. This system has a single positive eigenvalue λ = 5 and
so we expect x = 0 to be unstable, which it is. However only one direction of flow can be
determined using the single true eigenvector. Flow in other directions varies.
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Figure 35.4. The repeated root case follows the rules of stability based on the
sign of the eigenvalue. However, only one direction of flow can be determined
by the single true eigenvector (shown in black).





LESSON 36

1. Three Examples of 2× 2 Systems of ODE’s

Example 36.1. Suppose we wish to solve:

ẋ = 3x− 6y

ẏ = 5x− 8y,

which we can rewrite as:[
ẋ
ẏ

]
=

[
3 −6
5 −8

] [
x
y

] [
x(0)
y(0)

]
=

[
7
6

]
Step 1 - Compute Eigenvalues: The first step to solving this problem is finding the
eigenvalues of the matrix. We have:∣∣∣∣λ− 3 6

−5 λ+ 8

∣∣∣∣ = (λ− 3)(λ+ 8) + 30 = λ2 + 5λ+ 6 = (λ+ 2)(λ+ 3) = 0.

The eigenvalues are λ = −2 and λ = −3.
Step 2 - Compute Eigenvectors: We first compute the eigenvector for λ = −3. We have
the system of equations:[

−6 6
−5 5

] [
p1
p2

]
=

[
0
0

]
.

Then the eigenvector equation is:

−6p1 + 6p2 = 0,

this implies p1 = p2. Setting p1 = t we have:[
p1
p2

]
= t

[
1
1

]
.

Let t = 1. Then the eigenvector corresponding to λ = −3 is p1 = ⟨1, 1⟩. To compute the
eigenvector corresponding to λ = −2, we have:[

−5 6
−5 6

] [
p1
p2

]
=

[
0
0

]
.

Then the eigenvector equation is:

−5p1 + 6p2 = 0,

this implies p1 =
6
5
p2. Setting p2 = t we have:[

p1
p2

]
= t

[
6
5
1

]
.

Setting t = 5 we have p2 = ⟨6, 5⟩ as the eigenvector corresponding to λ = −2.
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Step 3 - Write General Solution: The general solution is:[
x(t)
y(t)

]
= C1

[
1
1

]
e−3t + C2

[
6
5

]
e−2t.

Step 4 - Find Specific Solutions: Substituting in the initial conditions yields[
x(0)
y(0)

]
=

[
7
6

]
C1

[
1
1

]
+ C2

[
6
5

]
.

Therefore we have:

7 = C1 + 6C2

6 = C1 + 5C2

We conclude C1 = 1 and C2 = 1. Therefore the specific solution is:

x(t) = e−3t + 6e−2t

y(t) = e−3t + 5e−2t.

Example 36.2. Suppose we wish to solve:

ẋ = −2x− 4y

ẏ = x− 6y,

which we can rewrite as:[
ẋ
ẏ

]
=

[
−2 −4
1 −6

] [
x
y

] [
x(0)
y(0)

]
=

[
4
3

]
Step 1 - Compute Eigenvalues: The first step to solving this problem is finding the
eigenvalues of the matrix. We have:∣∣∣∣λ+ 2 4

−1 λ+ 6

∣∣∣∣ = (λ+ 2)(λ+ 6) + 4 = λ2 + 8λ+ 16 = (λ+ 4)2 = 0.

The single eigenvalue is λ = −4.
Step 2 - Compute Eigenvector(s): We compute the eigenvector for λ = −4. We have
the system of equations:[

−2 4
−1 2

] [
p1
p2

]
=

[
0
0

]
.

Then the eigenvector equation is:

−2p1 + 4p2 = 0,

this implies p1 = 2p2. Setting p2 = t we have:[
p1
p2

]
= t

[
2
1

]
.

Let t = 1. Then the eigenvector is p1 = ⟨2, 1⟩. We now need to compute a linearly
independent pseudo-eigenvector. Letting:

A =

[
−2 −4
1 −6

]
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To this we must solve (A− λI)p2 = p1. This leads to the system:[
2 −4
1 −2

] [
p1
p2

]
=

[
2
1

]
.

Using the second row, the eigenvector equation is:

p1 − 2p2 = 1

this implies p1 = 1 + 2p2. Setting p2 = t we have:[
p1
p2

]
= t

[
2
1

]
+

[
1
0

]
.

Setting t = 0 we have p2 = ⟨1, 0⟩ as the pseudo-eigenvector.
Step 3 - Write General Solution: The general solution is:[

x(t)
y(t)

]
= C1

[
2
1

]
e−4t + C2

([
2
1

]
te−4t +

[
1
0

]
e−4t

)
Step 4 - Find Specific Solutions: Substituting in the initial conditions yields:[

x(0)
y(0)

]
=

[
4
3

]
C1

[
2
1

]
+ C2

[
1
0

]
.

Therefore we have:

4 = 2C1 + C2

3 = C1

We conclude C1 = 3 and C2 = −2. Therefore the specific solution is:

x(t) = 4e−4t − 4te−4t y(t) = 3e−4t − 2te−4t.

Remark 36.3. Before we proceed to the final example, we will state a theorem that will be
proved as an exercise.

Theorem 36.4. Consider the system of ordinary differential equations given by:

x = Ax,

and assume A ∈ R2×2 has complex conjugate eigenvalues s = λ ± µi with corresponding
complex conjugate eigenvectors:

p1 =

[
r1 + s1i
r2 + s2i

]
p2 =

[
r1 − s1i
r2 − s2i

]
.

Then the general solution to the system of ordinary differential equations is:

x = C1e
λt

([
r1
r2

]
cos(µt)−

[
s1
s2

]
sin(µt)

)
+ C2e

λt

([
s1
s2

]
cos(µt) +

[
r1
r2

]
sin(µt)

)
.

□

Example 36.5. Suppose we wish to solve:

ẋ = −x− y

ẏ = x− y,
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which we can rewrite as:[
ẋ
ẏ

]
=

[
−1 −1
1 −1

] [
x
y

] [
x(0)
y(0)

]
=

[
1
1

]
Step 1 - Compute Eigenvalues: The first step to solving this problem is finding the
eigenvalues of the matrix. We have:∣∣∣∣s+ 1 1

−1 s+ 1

∣∣∣∣ = (s+ 1)2 + 1 = 0.

The eigenvalues is s = −1± i. We see λ = −1 and µ = 1.
Step 2 - Compute Eigenvector(s): We compute the eigenvector for s = −1+ i. We have
the system of equations:[

i 1
−1 i

] [
p1
p2

]
=

[
0
0

]
.

Then the eigenvector equation is:

ip1 + p2 = 0,

this implies p2 = −ip1. Setting p1 = t we have:[
p1
p2

]
= t

[
1
−i

]
.

Let t = 1. Then the eigenvector is p1 = ⟨1,−i⟩. With this information we have:[
p1
p2

]
=

[
1 + 0i
0− 1i

]
,

so r1 = 1, r2 = 0, s1 = 0, s2 = −1.
Step 3 - Write General Solution: The general solution is:[

x
y

]
= C1e

−t

([
1
0

]
cos(t)−

[
0
−1

]
sin(t)

)
+ C2e

−t

([
0
−1

]
cos(t) +

[
1
0

]
sin(t)

)
.

Simplifying yields:

x(t) = C1e
−t cos(t) + C2e

−t sin(t)

y(t) = C1e
−t sin(t)− C2e

−t cos(t)

Step 4 - Find Specific Solutions: Substituting in the initial conditions yields:

x(0) = 1 = C1

y(0) = 1 = −C2,

therefore C1 = 1 and C2 = −1. Therefore the specific solution is:

x(t) = e−t cos(t)− e−t sin(t)

y(t) = e−t sin(t) + e−t cos(t).
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LESSON 37

1. Two Lemma’s on Boundary Value Problems

Remark 37.1. Our objective in this section is to state two lemma’s that will be needed for
solving the heat and wave equation in one dimension.

Remark 37.2. We state our differential equations in terms of spatial variable x with un-
known function w(x). However it would be just as easy to use w(t) and this would not affect
the results. Additionally, we use the notation Z+ = {1, 2, 3, . . . } to denote the set of positive
integers and Z+

0 = {0, 1, 2, . . . } to denote the set of non-negative integers.

Lemma 37.3. Consider the ordinary second order differential equation with boundary con-
ditions:

(37.1)

{
w′′ + λw = 0

w(0) = w(L) = 0,

where L > 0. This equation has non-trivial real solutions:

wn(x) = bn sin
(nπ
L
x
)
.

with bn ∈ R only if λ > 0 and λ = (nπ/L)2 for n ∈ Z+.

Proof. We divide the proof into three cases.

Case 1: λ = 0:
In this case, the differential equation becomes:

w′′ = 0.

This can be solved by direct integration (twice) to obtain:

w(x) = C1x+ C2.

If w(0) = 0, then C2 = 0. If w(L) = 0, then C1 = 0. Thus w(x) = 0 is the trivial solution.

Case 2: λ < 0:
The characteristic polynomial of the ordinary differential equation is:

(37.2) s2 + λ = 0.

Therefore, the solutions all have form:

(37.3) w(x) = C1e
√
−λx + C2e

−
√
−λx.

For simplicity, assume λ = −σ2. Then Eq. (37.3) becomes:

(37.4) w(x) = C1e
σx + C2e

−σx.
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Using the boundary condition w(0) = 0 and substituting we see that:

(37.5) C1 + C2 = 0.

Therefore we can rewrite Eq. (37.4) as:

(37.6) w(x) =
C

2

(
eσx − e−σx

)
= C sinh(σx),

for some constant C. Here, sinh is the hyperbolic sine function defined as:

sinh(x) =
ex − e−x

2
.

This function has a single root at x = 0; i.e., sinh(0) = 0. Therefore, since L > 0 it follows
that:

C sinh(L) = 0 =⇒ C = 0.

Thus, w(x) = 0 is the trivial solution.

Case 2: λ > 0:
Reasoning as before, Eq. (37.3) still holds, but now assume that λ = σ2. Then the solution
becomes:

(37.7) w(x) = C1 sin(σx) + C2 cos(σx).

With the requirement that w(0) = 0, we see that C2 = 0 since cos(0) = 1. Thus, the solution
has form:

(37.8) w(x) = C1 sin(σx).

If w(L) = 0, we must have sin(σL) = 0. This can only happen if:

σL = nπ,

for n ∈ Z+ because sin(nπ) = 0. (We can ignore the negative integers, since we can use C1

to adjust the sign.) Therefore, this equation has non-trivial solution only when:

σ =
nπ

L
,

which implies:

(37.9) λ =
(nπ
L

)2
.

The result is a non-trivial family of solutions:

wn(x) = bn sin
(nπ
L
x
)
,

where bn are arbitrary constants to be determined later. This completes the proof. □

Remark 37.4. Thus we see that with the boundary conditions w(0) = w(L) and linear
operator:

L =
d2

dx2

the eigenvalues and eigenfunctions of L are:

λ = −
(nπ
L

)2
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with eigenfunctions:

wn(x) = bn sin
(nπ
L
x
)
.

This can be verified by showing that:

d2w

dx2
= λw.

In understanding this, it’s important to not get confused by the signs. Here, λ is negative to
make Definition 3.25 true (where the operator d2

dx2 . Whereas in Eq. (37.1) from Lemma 37.3
the differential equation under consideration is:

w′′ = −λw.
That is, the negative is already taken into consideration. To eliminate the sign confusion,
many texts simply refer to this as the eignvalue problem.

Lemma 37.5. Consider the ordinary second order differential equation with boundary con-
ditions:

(37.10)

{
w′′ + λw = 0

w′(0) = w′(L) = 0,

where L > 0. This equation has non-trivial real solutions

(37.11) wn(x) = an cos
(nπ
L
x
)

with an ∈ R only if λ > 0 and λ = (nπ/L)2 for n ∈ Z+ or λ = 0 and w0(x) = a0.

Remark 37.6. The proof of this is almost a direct copy of the previous proof. Given that,
we will skip the case when λ < 0 and leave it as an exercise.

Proof. Assume λ > 0. It follows from the proof of Lemma 37.3 that Eq. (37.7) sill
holds and:

w(x) = C1 sin(σx) + C2 cos(σx),

where λ = σ2. Computation shows:

(37.12) w′(t) = σC1 cos(σx)− σC2 sin(σx).

If w′(0) = 0, then C1 = 0. If w′(L) = 0, then by a similar argument as the one in the proof
of Lemma 37.3 we see that if:

σ =
nπ

L
,

with n ∈ Z+, then:

−σC2 sin(σx) = 0.

Thus when λ > 0, the non-trivial family of solutions to the boundary value problem is:

wn(x) = an cos
(nπ
L
x
)
.

Now assume λ = 0. Then if w(x) = a0 for some a0 ∈ R, we see that w′(x) = 0 for all x,
satisfying the boundary conditions. Substitution shows this solution satisfies the ODE. □
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Remark 37.7. From the above proof, we can see that the eigenvalues for the boundary
values problem given in Eq. (37.10) are:

λ = −
(nπ
L

)2
while the eigenfunctions are given in Eq. (37.11) or the eigenvalue λ = 0 with the eigenfunc-
tions a0 for any value a0.



LESSON 38

1. Solving the Homogeneous Heat Equation with Separation of Variables

Remark 38.1. For complete details on PDE’s, see (e.g.) [Asm16, Hab03, Olv14].

Definition 38.2 (Initial and Boundary Conditions of the Heat Equation). Recall the one-
dimensional heat equation:

∂u

∂t
= k

∂2u

∂x2
,

which models the evolution of temperature on an infinitely thin rod. An initial condi-
tion u(x, 0) = f(x) specifies the heat distribution at the beginning of time, while Dirichlet
boundary conditions u(0, t) = u(L, t) = T specify the temperature at the two end-points.
Alternatively Neumann boundary conditions ux(0, L) = ux(L, t) = v specify the heat flow at
the boundary.

Definition 38.3 (Homogeneous Boundary Conditions). The boundary conditions u(0, t) =
u(L, t) = 0 or ux(0, t) = ux(L, t) are homogeneous and correspond to having our thin rod
with ends in blocks of ice (Dirichlet boundary conditions) or being insulated (Neumann
boundary conditions).

Remark 38.4. It is possible to model more complex boundary conditions, but we will not
consider that in this course.

Remark 38.5. The remainder of this lesson will be devoted to solving the heat equation
using the separation of variables techniques. We stress, this approach works for the homo-
geneous heat equation with homogeneous boundary conditions (Dirichlet or Neumann) and
periodic boundary conditions or Robin boundary conditions (which will not discuss in this
class).

Remark 38.6. For the remainder of this lesson, we will omit the initial condition and return
to it when we discuss Fourier series in the next chapter.

Derivation 38.7. We consider the one-dimensional heat equation with homogeneous Dirich-
let boundary condition:

ut = kuxx

u(0, t) = u(L, t) = 0

Assume (for the sake of argument) that u(x, t) = v(t)w(x), where v(t) and w(x) are two
C2 univariate functions of time and space respectively. If u(x, t) satisfies the heat equation,
then:

ut = v′(t)w(x) = kv(t)w′′(x) = kuxx.
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From this we deduce that:

1

k

v′(t)

v(t)
=
w′′(x)

w(x)
.

The left-hand-side of this equation is strictly a function of t while the right-hand-side is
strictly a function of x. Therefore, if this were to hold for all x and t, it follows that

1

k

v′(t)

v(t)
=
w′′(x)

w(x)
= −λ,

where λ ∈ R is a constant and we use −λ to make it consistent with our lemmas. We now
have two ordinary differential equations:
Time ODE:

v′ = −kλv
Space ODE:

w′′ = −λw
w(0) = w(L) = 0.

Notice we have imposed the boundary conditions on the space ODE because for all t,
u(0, t) = u(L, t) = 0, so unless v(t) = 0 (i.e., we have a trivial solution), we’ll require
w(0) = w(L) = 0.

From Lemma 37.3, we know there is a family of solutions to the space ODE given by:

wn(x) = an sin
(nπ
L
x
)
.

with:

λ =
(nπ
L

)2
.

We can now solve the time ODE. Recall from Remark 3.6, the solution to the time ODE is:

(38.1) v(t) = A exp (−kλt) .
Substituting in the value of λ (as a function of n) we have:

vn(t) = An exp

[
−k
(nπ
L

)2
t

]
,

where An is an arbitrary constant that we are going to absorb into the bn. Note that
the the operator L = ∂t − k∂xx is linear. Therefore we can add the individual solutions
un(x, t) = vn(t)wn(x) to obtain a generic solution to the heat equation with homogeneous
Dirichlet boundary values:

(38.2) u(x, t) =
∞∑
n=1

bn exp

[
−k
(nπ
L

)2
t

]
sin
(nπ
L
x
)
.

Thus we have proved a proposition.

Proposition 38.8. Given coefficients bn (n ∈ Z+), if the series:

(38.3) u(x, t) =
∞∑
n=1

bn exp

[
−k
(nπ
L

)2
t

]
sin
(nπ
L
x
)
.
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may be differentiated term-by-term in both x and t, then u(x, t) solves the one-dimensional
heat equation with homogeneous Dirichlet boundary conditions. □

Remark 38.9. We are not going to worry a great deal about whether or not term-by-term
differentiation is allowed in the solution u(x, t) defined in Eq. (38.3). Suffice it to say, it is
allowed for all the choices of bn we require.

Remark 38.10. It is worth noting now that we have not determined how to identify the
coefficients bn. This will be a major topic of discussion when we introduce initial conditions
and discuss Fourier series and Fourier decomposition in the next chapter.

Proposition 38.11. Given coefficients an for n = 0, 1, . . . if the series

(38.4) u(x, t) = a0 +
∞∑
n=1

an exp

[
−k
(nπ
L

)2
t

]
cos
(nπ
L
x
)
.

may be differentiated term-by-term in both x and t, then u(x, t) solves the heat equation with
Neumann boundary conditions:

ut = kuxx

ux(0, t) = ux(L, t) = 0

Remark 38.12. It is possible to model the heat equation on a circle in which case we use
periodic boundary conditions u(−L, t) = u(L, t). The result is a solution with both sines
and cosines.

u(x, t) = a0 +
∞∑
n=1

an exp

[
−k
(nπ
L

)2
t

]
cos
(nπ
L
x
)
+

∞∑
n=1

bn exp

[
−k
(nπ
L

)2
t

]
sin
(nπ
L
x
)
.

The derivation is straightforward but relies on another boundary value problem lemma.





LESSON 39

1. Definitions and Preliminaries

Remark 39.1. In this lesson, we will follow historical precedent and define Fourier series on
the interval [−L,L]. In doing so, we will construct formulae for determining the coefficients
a0, an and bn from the previous chapter. However, this should create some tension in your
mind because we spent the last chapter solving problems on [0, L]. We can easily translate
solutions back and forth or we can find formulae for our coefficients on the interval [0, L].
We will illustrate both approaches.

Definition 39.2 (Even and Odd Functions). A function f(x) is even if f(−x) = f(x). It is
odd if f(−x) = −f(x).

Example 39.3. The classic examples of even and odd functions are f(x) = x2 and f(x) = x
respectively. Recall from trigonometry that cos(x) is an even function while sin(x) is an odd
function.

2. Fourier Series

Definition 39.4 (Fourier Series). A Fourier Series defined on the interval [−L,L] is an
infinite series of the form:

(39.1) a0 +
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
Remark 39.5. Much like a Taylor series for a function f(x), the idea is to construct a
Fourier series for a function so that:

f(x) = a0 +
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
.

This is called the Fourier decomposition of the function. We will see, however, that this is
not always possible to enforce equality in the strictest sense. Therefore, following [Olv14,
Hab03], we we will write:

f(x) ∼ a0 +
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
to indicate that equality may not hold for every value of x.

Lemma 39.6. Suppose m,n ∈ Z+. Then:

(39.2)

ˆ L

−L

sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0 if m ̸= n

L otherwise.
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Proof. Assume n ̸= m. Apply the trigonometric identity:

sin(θ) sin(φ) =
1

2
[cos(θ − φ)− cos(θ + φ)] .

The integral in Eq. (39.2) becomes:

ˆ L

−L

1

2

[
cos

(
n−m

L
πx

)
− cos

(
n+m

L
πx

)]
dx =

1

2

[
L

(n−m)π
sin

(
n−m

L
πx

)
− L

(n+m)π
sin

(
n+m

L
πx

)]∣∣∣∣L
−L

Using sin(−θ) = − sin(θ), we can simplify the result as:

ˆ L

−L

sin
(nπx
L

)
sin
(mπx

L

)
dx =

L

2π
{2 sin[(n−m)π]− 2 sin[(n+m)π]} .

If n ̸= m, then n−m and n+m are non-zero integers and thus sin[(n−m)π] = sin[(n+m)π] =
0.

Now suppose n = m. Apply the trigonometric identity:

sin2(θ) =
1

2
− 1

2
cos (2θ)

Then: ˆ L

−L

1

2
− 1

2
cos

(
2nπx

L

)
=
x

2
− L

4nπ
sin

(
2nπx

L

)∣∣∣∣L
−L

= L.

This completes the proof. □

Lemma 39.7. Suppose m,n ∈ Z+
0 . Then:

(39.3)

ˆ L

−L

cos
(nπx
L

)
cos
(mπx

L

)
dx =


0 if m ̸= n

L if n = m ̸= 0

2L if n = m = 0.

Lemma 39.8. Suppose m,n ∈ Z+
0 . Then:

(39.4)

ˆ L

−L

sin
(nπx
L

)
cos
(mπx

L

)
dx = 0

Proof. Apply the identity:

sin(θ) cos(φ) =
1

2
[sin(θ + φ) + sin(θ − φ)] .

The integral becomes:

1

2

ˆ L

−L

sin

[
(n+m)πx

L

]
+ sin

[
(n−m)πx

L

]
dx =

1

2

{
− L

(n+m)π
cos

[
(n+m)πx

L

]
− L

(n−m)π
cos

[
(n−m)πx

L

]}∣∣∣∣L
−L

.
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Cosine is an even function so cos(−x) = cos(x). Therefore, evaluating at x = L and x = −L
we see:

cos [(n+m)π]− cos [−(n+m)π] = 0 = cos [(n−m)π]− cos [−(n−m)π] .

Thus the integral is zero as required. □

Proposition 39.9. Suppose that f : [−L,L] → R and

f(x) ∼ a0 +
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
.

Then:

a0 =
1

2L

ˆ L

−L

f(x) dx(39.5)

an =
1

L

ˆ L

−L

f(x) cos
(nπx
L

)
dx(39.6)

bn =
1

L

ˆ L

−L

f(x) sin
(nπx
L

)
dx,(39.7)

assuming these integrals exist and we may integrate the Fourier series term-by-term.

Proof. If m = 0, then 1 = cos(mπx/L). It follows that:

ˆ L

−L

f(x) dx =

ˆ L

−L

[
a0 cos

(mπx
L

)
+

∞∑
n=1

an cos
(nπx
L

)
cos
(mπx

L

)
+ bn sin

(nπx
L

)
cos
(mπx

L

)]
dx

Passing the integrals through the sums and applying Lemmas 39.7 and 39.8 implies:ˆ L

−L

f(x) dx =

ˆ L

−L

a0 dx = 2La0.

Therefore:

a0 =
1

2L

ˆ L

−L

f(x) dx

For m ̸= 0, we compute:

ˆ L

−L

f(x) cos
(mπx

L

)
dx =

ˆ L

−L

[
a0 cos

(mπx
L

)
+

∞∑
n=1

an cos
(nπx
L

)
cos
(mπx

L

)
+ bn sin

(nπx
L

)
cos
(mπx

L

)]
dx

Now suppose that m = n. Applying Lemmas 39.7 and 39.8 again implies:ˆ L

−L

f(x) cos
(nπx
L

)
dx =

ˆ L

−L

an cos
2
(nπx
L

)
dx = anL,
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because (again) a0 = a0 cos(mπx/L) for m = 0. Therefore:

an =
1

L

ˆ L

−L

f(x) cos
(nπx
L

)
dx.

The equality

bn =
1

L

ˆ L

−L

f(x) sin
(nπx
L

)
dx,

holds by a similar argument but by multiplying by sin(nπx/L). □

Remark 39.10. In order for a function to have a Fourier series, these integrals must exist
for all coefficients. In particular, this means that f(x) must at least be integrable on [−L,L]
(or an appropriate interval in question). Thus, (for example) this eliminates function with
asymptotes.



LESSON 40

1. Completing the Solution to the Heat Equation on [0, L]

Remark 40.1. Having established some basic theory on Fourier series, we can now return
to the problem of solving the heat equation with an initial condition u(x, 0) = f(x).

Lemma 40.2. If f : [0, L] → R is a function and

f(x) ∼
∞∑
n=1

bn sin
(nπx
L

)
,

then:

bn =
2

L

ˆ L

0

f(x) sin
(nπx
L

)
dx.

□

Remark 40.3. The representation of f(x) on [0, L] using only sines is called a Fourier sine
series.

Remark 40.4. It is straightforward to prove Lemma 40.2 by first showing thatˆ L

0

sin
(mπx

L

)
sin
(nπx
L

)
dx =

{
0 if m ̸= n
L
2

if m = n.

Then we argue as we did in Proposition 39.9.

Derivation 40.5. Consider the one-dimensional heat equation with homogeneous Dirichlet
boundary conditions and an initial condition:

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) = f(x).

Recall the solution was given in Eq. (38.2):

u(x, t) =
∞∑
n=1

bn exp

[
−k
(nπ
L

)2
t

]
sin
(nπ
L
x
)
.

except for values of bn. Note we require:

u(x, 0) = f(x) =
∞∑
n=1

bn sin
(nπ
L
x
)
.

Therefore, we are simply constructing a Fourier decomposition of f(x) using sine functions.
We can apply Lemma 40.2 to obtain the values for bn and we have solved the partial differ-
ential equation completely.
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Example 40.6. Consider the heat equation with k = 1 and L = 1 and homogeneous
Dirichlet boundary conditions. Suppose:

u(x, 0) =

{
1 if 1

4
≤ x ≤ 3

4

0 otherwise.

Then:

bn = 2

ˆ 1

0

f(x) sin(nπx) dx = 2

ˆ 3
4

1
4

sin(nπx) dx = − 2

nπ
cos(nπx)

∣∣∣∣
3
4

1
4

=

2

nπ

(
cos
(nπ

4

)
− cos

(
3nπ

4

))
We can use a sum-to-product identity

cos(θ)− cos(φ) = −2 sin

(
θ + φ

2

)
sin

(
θ − φ

2

)
to compute:

2

nπ

(
cos
(nπ

4

)
− cos

(
3nπ

4

))
=

−4

nπ
sin
(nπ

2

)
sin
(
−nπ

4

)
=

4

nπ
sin
(nπ

2

)
sin
(nπ

4

)
,

because sin(−x) = sin(x). It is perfectly acceptable to stop here (or even the step before)
and write:

(40.1) f(x) ∼
∞∑
n=1

4

nπ
sin
(nπ

2

)
sin
(nπ

4

)
sin(nπx).

The approximation for f(x) using 20 terms is shown in Fig. 40.1. Suppose, however, we wish

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Figure 40.1. An approximation of the step function describing the initial
heat distribution.

to get rid of those trigonometric terms. We can do it, but it’s not obvious from the outside.
First, note n = 2m (i.e., even) then bn = 0 because:

sin
(nπ

2

)
= sin(mπ) = 0.



1. COMPLETING THE SOLUTION TO THE HEAT EQUATION ON [0, L] 211

Thus, we will be left with only odd terms. When n is odd, then n = 2m−1 (form = 1, 2, . . . )
we have:

sin

(
(2m− 1)π

2

)
sin

(
(2m− 1)π

4

)
= (−1)f(m)

√
2

2
.

The exact form of f(m) is unclear. Computing a few terms we see a pattern: It turns out

m 1 2 3 4 5 6 7 8

sin
(

(2m−1)π
4

) √
2
2

−
√
2
2

-
√
2
2

√
2
2

√
2
2

−
√
2
2

-
√
2
2

√
2
2

this patten can be described by the function:

sin

(
(2m− 1)π

2

)
sin

(
(2m− 1)π

4

)
= (−1)

m(m−1)
2

√
2

2

Therefore, we can write:

f(x) ∼
∞∑

m=1

(−1)
m(m−1)

2
2
√
2

(2m− 1)π
sin ((2m− 1)πx) .

We conclude that:

u(x, t) =
∞∑

m=1

(−1)
m(m−1)

2
2
√
2

(2m− 1)π
sin [(2m− 1)πx] exp

[
−k ((2m− 1)π)2 t

]
.

Assuming k = 1/10, an approximation using 100 terms for various times is shown in Fig. 40.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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Time = 0.01

Time = 0.01

Time = 1

Figure 40.2. An approximation of the solution to the heat equation when
the initial distribution has a jump discontinuity.

Remark 40.7. It is worth noting that the jump discontinuity could be at the boundary
even given the Dirichlet boundary conditions. That is, we could use the initial condition:

u(x, 0) =

{
10 if 0 < x < L

0 otherwise

and use the boundary condition u(0, t) = u(0, L) = 0.

Remark 40.8. We note also this is an example of a solution that is not really differentiable
everywhere at all times and yet we are using it as a solution to a PDE.
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Lemma 40.9. If f : [0, L] → R is a function and

f(x) ∼ a0 +
∞∑
n=1

an cos
(nπx
L

)
,

then:

a0 =
1

L

ˆ L

0

f(x) dx

an =
2

L

ˆ L

0

f(x) cos
(nπx
L

)
dx

□

Remark 40.10. The representation of f(x) on [0, L] using only cosines is called a Fourier
cosine series.

Derivation 40.11. Consider the one-dimensional heat equation with homogeneous Neu-
mann boundary conditions and an initial condition:

ut = kuxx

ux(0, t) = ux(L, t) = 0

u(x, 0) = f(x).

Recall the solution was given in Eq. (38.4):

u(x, t) = a0 +
∞∑
n=1

an exp

[
−k
(nπ
L

)2
t

]
cos
(nπ
L
x
)
.

except for values of a0 and an. Note we require:

u(x, 0) = f(x) = a0 +
∞∑
n=1

an cos
(nπ
L
x
)
.

Therefore, we are simply constructing a Fourier decomposition of f(x) using cosine functions.
We can apply Lemma 40.9 to obtain the values for a0 and an and we have solved the partial
differential equation completely.

Example 40.12. Consider the same problem data as in Example 40.6 except replace the ho-
mogeneous Dirichlet boundary conditions with homogeneous Neumann boundary conditions.
Then:

a0 =

ˆ 3
4

1
4

dx =
1

2
.

Likewise:

an = 2

ˆ 3
4

1
4

cos(nπx) dx =
2

nπ

[
sin

(
3nπ

4

)
− sin

(nπ
4

)]
.

Simplifying further is left to the reader (if so desired). The resulting solution is:

u(x, t) =
1

2
+

∞∑
n=1

2

nπ

[
sin

(
3nπ

4

)
− sin

(nπ
4

)]
exp

[
−k (nπ)2 t

]
cos (nπx)
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We can illustrate the resulting solution with the density plot in Fig. 40.3.
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0.8

1.0

Figure 40.3. An illustration of the heat equation with Neumann boundary
conditions and a discontinuous initial condition.





LESSON 41

1. Separation of Variables Solution for the Wave Equation

Proposition 41.1 (String with Fixed Ends). Consider the one-dimensional wave equation
with Dirichlet boundary conditions:

utt = c2uxx

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x).

Then the solution to this PDE is given by:

(41.1) u(x, t) =
∞∑
n=1

an cos

(
cnπt

L

)
sin
(nπx
L

)
+ bn sin

(
cnπt

L

)
sin
(nπx
L

)
,

where an is given by Lemma 40.2 as:

an =
2

L

ˆ L

0

f(x) sin
(nπx
L

)
dx

and bn is given by:

bn =
2

cnπ

ˆ L

0

g(x) sin
(nπx
L

)
dx.

□

Example 41.2. Consider the wave equation with Dirichlet boundary conditions on the
interval [0, π] and let:

f(x) =

{
x 0 ≤ x ≤ π

2

π − x π
2
< x ≤ π.

Suppose g(x) = 0; i.e., if we are modeling the string, it is initially at rest. Then: bn = 0 and
we must only compute an.

an =
2

π

ˆ π

0

f(x) sin(nx) dx =

2

π

ˆ π
2

0

x sin(nx) dx+
2

π

ˆ π

π
2

(π − x) sin(nx) dx =

{
4

n2π
(−1)

n−1
2 if n is odd

0 otherwise.
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Therefore, we can write:

u(x, t) =
∞∑
n=1

(−1)n−1 4

(2n− 1)2π
cos [(2n− 1)ct] sin [(2n− 1)x]

Time snapshots of the resulting solution with c = 1 are shown in Fig. 41.1.

Figure 41.1. A solution to the wave equation is illustrated assuming c = 1.
This models a string plucked into a triangle and then released.

Derivation 41.3. Consider the wave equation on the interval [0, L] with Neumann boundary
conditions. This derivation is a bit harder than the case with Dirichlet boundary conditions,
which is left as an exercise. The wave equation is second order in t as well as x, so our initial
conditions must specify both u(x, 0) and ut(x, 0). Thus our fully specified problem is:

utt = c2uxx

ux(0, t) = ux(L, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x).

We approach this with separation of variables again. Let:

u(x, t) = v(t)w(x).

Then the boundary conditions become:

w′(0) = 0

w′(L) = 0.

Differentiating (as before) we have:

v′′(t)w(x) = c2v(t)w′′(x) =⇒ 1

c2
v′′(t)

v(t)
=
w′′(x)

w(x)
.

As before the left-hand-side is only a function of t while the right-hand-side is only a function
of x. This yields the equations:

1

c2
v′′

v
= −λ

w′′

w
= −λ,
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where λ is a constant and the sign is chosen to be consistent with Lemmas 37.3 and 37.5.
The second equation provides the boundary value problem:

w′′ + λw = 0

w′(0) = 0

w′(L) = 0.

We know from Lemma 37.3 this has solutions:

(41.2) wn(x) = an cos(nπx/L)

with eigenvalues λ = (nπ/L)2 or w0(x) = a0 for λ = 0.
Case I: (λ > 0) Consider the case when λ > 0. We now turn our attention to the problem
for v(t), which on simplification becomes:

v′′ +

(
c2n2π2

L2

)
v = 0.

If we assume c > 0, then from the proof of Lemma 37.3 (or Lemma 37.5) we know the
solutions have form:

(41.3) vn(t) = An cos

(
cnπt

L

)
+Bn sin

(
cnπt

L

)
.

Case II: (λ = 0) On the other hand, when λ = 0, the problem for v(t) is:

v′′ = 0

From the proof Lemma 37.3, we know the solutions have form:

(41.4) v0(t) = C0 + C1t.

Combining Solutions: Combining Eq. (41.2) with Eq. (41.3) we have:

un(x, t) = vn(t)wn(t) = an cos

(
cnπt

L

)
cos
(nπx
L

)
+ bn sin

(
cnπt

L

)
cos
(nπx
L

)
.

When λ = 0, we combine Eq. (41.4) with the solution w0(x) = a0 to obtain:

u0(x, t) = a0 + c1t.

Summing up all solutions we see:

(41.5) u(x, t) = a0 + b0t+
∞∑
n=1

an cos

(
cnπt

L

)
cos
(nπx
L

)
+ bn sin

(
cnπt

L

)
cos
(nπx
L

)
.

We need only find the values of a0, c1, an and bn. Evaluating Eq. (41.5) at t = 0 we have:

u(x, 0) = f(x) = a0 +
∞∑
n=1

an cos
(nπx
L

)
,

because cos(0) = 1 and sin(0) = 0. Therefore, we must find a Fourier cosine series expansion
of f(x) on the interval [0, L]. The coefficients a0 and an are given in Lemma 40.9.

Turning now to the second initial condition, we differentiate u(x, t) term-by-term with
respect to t to obtain:

ut(x, t) = b0+
∞∑
n=1

−an
cnπ

L
sin

(
cnπt

L

)
cos
(nπx
L

)
+ bn

cnπ

L
cos

(
cnπt

L

)
cos
(nπx
L

)
.
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Now evaluating at t = 0:

ut(x, 0) = g(x) = b0 +
∞∑
n=1

bn
cnπ

L
cos
(nπx
L

)
.

We seek a Fourier cosine series for the function h(x) = Lg(x)/cnπ. Therefore we have:

bn =
2

L

ˆ L

0

h(x) cos
(nπx
L

)
dx =

2

L

ˆ L

0

L

cnπ
g(x) cos

(nπx
L

)
dx.

Thus we conclude:

bn =
2

cnπ

ˆ L

0

g(x) cos
(nπx
L

)
dx.

The coefficient b0 is also given in Lemma 40.9 and is:

b0 =
1

L

ˆ L

0

g(x) dx.

Remark 41.4. Solutions to the wave equation with Neumann boundary conditions have
the interesting property that they can become unbounded. This is a result of the b0t term
that appears in the solution. This is clearly a non-physical solution.



LESSON 42

1. Interesting Fourier Series Examples

Example 42.1. We will find a Fourier series for the function:

f(x) =
x2

4

on the interval [−π, π]. Using this interval will remove the π terms in the functions and get
us an interesting corollary. First we compute bn. We can use an integral table or a computer
algebra system (like Maple or Mathematica) to compute:ˆ

x2

4
sin(nx) dx =

2x sin(nx)

4n2
− (n2x2 − 2) cos(nx)

4n3
.

Notice the function:

g(x) =
(n2x2 − 2) cos(nx)

4n3

is even because cos(x) and ax2 − b are both even. Therefore evaluating g(x) at x = π and
x = −π yields the same values. At the same time, sin(nπ) = 0 and therefore we can conclude
that: ˆ π

−π

x2

4
sin(nx) dx =

2x sin(nx)

4n2
− (n2x2 − 2) cos(nx)

4n3
= 0.

If you’ve already used a computer, you could have jumped right to this step. Therefore,
bn = 0 for all n. This is not surprising. We know f(x) is an even function so we would not
expect it to be the result of adding up odd functions like sin(nx).

Next we compute an for n ≥ 1. We have:ˆ
x2

4
cos(nx) dx =

(n2x2 − 2) sin(nx)

4n3
+

2x cos(nx)

4n2
.

Evaluating at x = −π and x = π and subtracting yields:ˆ π

−π

x2

4
cos(nx) dx =

4π cos(πn)

4n2
,

because sin(nπ) = 0 and x cos(x) is odd. This can be simplified by noting that cos(πn) =
(−1)n. Therefore we conclude:

an =
1

π

(
(−1)nπ

n2

)
=

(−1)n

n2
.

for n ≥ 1. Finally:

a0 =
1

2π

ˆ π

−π

x2

4
dx =

π2

12
.
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We conclude that:

x2

4
∼ π2

12
+

∞∑
n=1

(−1)n

n2
cos (nx)

This is illustrated in Fig. 42.1.

-3 -2 -1 0 1 2 3
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2.5

Fourier Approximation (4 Terms) x2/4

Figure 42.1. An illustration of the approximation of f(x) on the interval
[−π, π] using four Fourier terms.

Corollary 42.2. Assuming the Fourier decomposition for x2/4 converges to the function
itself on [−π, π], then:

(42.1)
π2

6
=

∞∑
n=1

1

n2
.

Proof Sketch. Since we defined the Fourier decomposition on [−π, π], we have every
right to expect that:

π2

4
=
π2

12
+

∞∑
n=1

(−1)n

n2
cos (nπ)

by setting x = π. Note (again) that:

cos(nπ) = (−1)n

Therefore we have:

π2

4
=
π2

12
+

∞∑
n=1

(−1)n

n2
(−1)n =

π2

12
+

∞∑
n=1

(−1)2n

n2
=
π2

12
+

∞∑
n=1

1

n2
.

Subtract π2/12 from both sides to obtain Eq. (42.1). □

Remark 42.3. This is Basel Problem first solved by Euler in 1734 (non-rigorously first,
then rigorously later). It is one of the early hints at the deep connections between Number
Theory and Fourier (Harmonic) Analysis. A different proof using Fourier methods can be
produced using Pareval’s Theorem.
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Figure 42.2. The periodic extension of the function f(x) = x defined on the
interval [−L,L].

2. More on Fourier Sin and Cos Series

Remark 42.4. Recall that a function f : R → R is periodic with period T if f(x) = f(x+T )
for all x ∈ R. For example, the function sin(2πfx) is periodic with period 1/f .

Definition 42.5 (Periodic Extension). Suppose f : [−L,L] → R is defined. The periodic

extension of f to f̃ : R → R is the function defined as:

(42.2) f̃(x) = f(x− 2Lm),

where m is the unique integer such that −L ≤ (x− 2Lm) ≤ L.

Remark 42.6. Definition 42.5 is a complicated way of saying we take f defined on the
interval [−L,L] and repeat it over and over in both directions. The same process can be
repeated with any interval. For example [0, L], but then we have to figure out what to
do when we cross the origin. We illustrate this in Fig. 42.2 with the function f(x) = x
defined only on the interval [−1, 1]. We will see that using Fourier Sine or Cosine series
decomposition for a function defined on [0, L] has important consequences for its periodic
extension outside this interval.

Lemma 42.7. The sum of two even functions is even. The sum of two odd functions is
odd. □

Lemma 42.8. The product of two even functions is even. The product of two odd functions
is even. The product of an even and odd function is odd. □

Lemma 42.9. If f(x) is odd and integrable on [−L,L], then:ˆ L

−L

f(x) dx = 0.

Proof. We have:ˆ L

−L

f(x) dx =

ˆ 0

−L

f(x) dx+

ˆ L

0

f(x) dx =

ˆ L

0

f(−x) dx +

ˆ L

0

f(x) dx = −
ˆ L

0

f(x) dx +

ˆ L

0

f(x) dx = 0.

□
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Lemma 42.10. If f(x) is even and integrable on [−L,L], then:ˆ L

−L

f(x) dx = 2

ˆ L

0

f(x) dx.

Remark 42.11. The following proposition follows from Lemmas 42.8 to 42.10 and Lem-
mas 40.2 and 40.9.
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1. Fourier Decomposition of Odd and Even Functions

Proposition 43.1. If f(x) is even, then bn = 0 for all n in its Fourier decomposition on
[−L,L] and f(x) is represented by a Fourier cosine series whose coefficients may be deter-
mined by Lemma 40.9. If f(x) is odd, then a0 = an = 0 for all n in its Fourier decomposition
on [−L,L] and f(x) is represented by a Fourier sine series whose coefficients may be deter-
mined by Lemma 40.2. □

Remark 43.2. What this means is that when we compute a Fourier sine series of a function
on [0, L], we will always recover its periodic extension as an odd function. When we compute
a Fourier cosine series of a function on [0, L] we will recover its even extension.

Example 43.3. Consider the odd function f(x) = x and compute its Fourier cosine series
on [0, π] (here L = π). We have:

a0 =
1

π

ˆ π

0

x dx =
π

2

and

an =
2

π

ˆ π

0

x cos(nx) dx =
2 (−1 + cos(nπ))

πn2
=

2

πn2
(−1 + (−1)n) ={

− 4
πn2 if n is odd

0 otherwise.

On [0, L] (and only on this interval) we have:

(43.1) x ∼ π

2
−

∞∑
n=1

4 cos[(2n− 1)x]

π(2n− 1)2
,

which perfectly reproduces f(x) = x, see Fig. 43.1 (left). However, if we look at the plot of
this approximation outside the region we see that the Fourier cosine series actually produces
an even sawtooth wave, which models f(x) = |x| on [−π, π]. See Fig. 43.1(right). This is a
result of using a Fourier cosine series on an odd function.

Remark 43.4. We can obtain another remarkable series representation from the previous
example. Set x = 0 in the Fourier cosine expansion in Eq. (43.1) to obtain:

0 =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
.
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Figure 43.1. The Fourier cosine series of an odd function produces an even
periodic extension, as expected.

Simplifying a bit yields:

π2

8
=

∞∑
n=1

1

(2n− 1)2
= 1 +

1

9
+

1

25
+

1

49
+ · · · .

Remark 43.5. In many books, when dealing with a Fourier cosine series, by convention,
the series is written:

f(x) ∼ a0
2

+
∞∑
n=1

an cos
(nπx
L

)
.

If this is the case, then you can use the same formula for a0 as an because you will be dividing
by 2. (See Lemma 40.9.)

2. Convergence

Theorem 43.6. If f(x) is piecewise C1 on the interval [−L,L] then the Fourier series

f̂(x) of f(x) converges to:

(1) The periodic extension of f(x) on R where ever the periodic extension is continuous,
or

(2) The average:

f̂(x) =
1

2

[
f(x+) + f(x−)

]
,

if x is a point of discontinuity (i.e., a jump discontinuity). Here:

f(x+) = lim
a→x+

f(a)

f(x−) = lim
a→x−

f(a)

Remark 43.7. You will note, we are being intentionally vague about what we mean by
convergence. In fact we will not even commit to whether that convergence is uniform or
pointwise since it turns out it’s dependent on the function itself.

Remark 43.8. The shortest proof of a form of this theorem is most likely in Rudin [R+64].
It’s only a paragraph long, but relies on a number of auxiliary results. Haberman [Hab03]
eschews a proof, focusing on the applications. Olvers [Olv14] has an exceptionally detailed
proof. There is also a proof in Asmar [Asm16].
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There are a few ways to approach the problem of proving this result (which we will not
do). Olver’s approach takes a nice detour through Hilbert space. Rudin’s approach ignores
the possibility of jump discontinuities and deals with the theorem as a part of a discussion
on sequences and series of functions. It is a little less general, but a really beautiful proof.

The better part of the 150 years after Fourier lived and died saw mathematicians trying
to quantify the conditions under which Fourier series converge and how they converge. Most
of modern analysis is built upon and relies on these results. For our purposes, it suffices to
think of convergence as being close enough for practical physics or engineering purposes.

Example 43.9 (Gibb’s Phenomena). In Theorem 43.6, we quantify the conditions under
which a Fourier series will converge to the function it is approximating, but infinite sums
are impossible to compute in practice. Therefore, it is worth understanding what happens
when we use a finite sum to approximate a function. We have already seen this in Figs. 40.1
and 40.2. It is tempting to think this is simply a matter of using a short series approximation,
but the overshoot seen near the jump discontinuity (approximately a 9% error) persists even
as we add terms as shown in Fig. 43.2. This error is called Gibbs phenomena (named for J.

Gibbs

Phenomena
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Figure 43.2. (Left) Gibbs Phenomena is persistent even as the number of
terms in the Fourier series increases. This over/undershoot is about 9%.
(Right) Gibbs phenomena presents as a result of discontinuities in the pe-
riodic extension of the function being approximated.

Willard Gibbs, an American physicist). It is present anytime there is a jump discontinuity in
the periodic extension of the function being approximated. There are several explanations
for the emergence of this phenomena but the most straightforward one is the fact that
the Fourier series does not converge uniformly to the periodic extension of the underlying
function because of the presence of the jump discontinuities.





LESSON 44

1. What is a Fourier Transform

Definition 44.1 (Inner Product on Function Spaces). Let f, g : [a, b] → R be two functions
defined on the interval [a, b]. Then the inner product of these functions is:

⟨f, g⟩ =
ˆ b

a

f(x)g(x) dx,

provided it exists. If f, g : [a, b] → C then the (complex) inner product is:

⟨f, g⟩ =
ˆ b

a

f(x)g(x) dx,

provided it exists. Here g(x) is the complex conjugate of g(x).

Definition 44.2 (Orthogonal Functions). Two functions f, g : [a, b] → R (respectively
f, g : [a, b] → C) are orthogonal if ⟨f, g⟩ = 0.

Corollary 44.3. If n ̸= m are integers, then sin(nπx/L) and sin(mπx/L) are orthogonal
on the interval [−L,L]. The same also holds for cos(nπx/L) and cos(mπx/L) for m ̸= n
and sin(mπx/L) and cos(nπx/L) irrespective of m and n. □

Remark 44.4 (What is a Fourier Decomposition?). Recall from Vector Calculus that in R2,
any vector x⃗ can be written as:

x⃗ = âi+ b̂j,

where î and ĵ are the standard basis vectors. Using the dot product we note that also that
î · ĵ = 0 because the vectors are orthogonal. (The dot product of orthogonal vectors is zero.)
The coefficients (a, b) are the coordinates of the vector written in the standard basis. The
same is true of the Fourier coefficients. We imagine the function f : [−L,L] → R as a vector
in an infinite dimensional space. The functions cos(nπx/L) and sin(nπx/L) are basis vectors
in this space. The Fourier decomposition is just an expression of the function f(x) in this
basis. Note:

x⃗ · î = a

x⃗ · ĵ = b

By taking a dot product of the vector x⃗ with the basis vectors î and ĵ, we recover the
coefficients. This is exactly what Eqs. (39.5) to (39.7) are doing – with an appropriate rescale
because cos(nπx/L) and sin(nπx/L) are not unit vectors, as we showed in Lemmas 39.6
and 39.7.
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