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Geospatial Assessment of Recovery Rates
Following a Tornado Disaster

Melissa A. Wagner, Soe W. Myint, and Randall. S. Cerveny

Abstract—Remote sensing has proven to be instrumental in
monitoring land alterations from natural disasters and anthro-
pogenic processes. Additionally, geospatial analyses of tornado
disasters have provided damage assessments, whereas hazard re-
search has limited recovery evaluation to economic and migration
perspectives. This study examines recovery from the 1999 Moore,
OK, tornado disaster across three consecutive years, utilizing
medium-resolution imagery and a series of image-processing al-
gorithms. Spectral enhancements including normalized difference
vegetation index, soil-adjusted vegetation index, urban index (UI),
and two new indices, i.e., ShortWave Radiation Index (SWIRI)
and Coupled Vegetative Urban Index (CVUI), were utilized in con-
junction with a recovery index and statistical thresholds to assess
recovery. Classification accuracy assessments prove that geospa-
tial techniques and medium-resolution imagery can capture the
rate of recovery with the most effective results noted with SWIRI
using the 1.5 standard deviation threshold. Computed annual and
Fujita Scale recovery rates indicate that 1) the most severely dam-
aged areas associated with an F5 rating were the slowest to recover
whereas the lesser damaged areas (F1–F3) were the quickest to
rebuild and 2) complete recovery was never attained, even three
years after the event, regardless of the F-scale damage zones.
Recovery appears to be a significant and direct function of the
level of damage sustained. With these results, decision makers and
other policyholders could implement more resilient approaches in
reconstructing the more severely damaged areas.

Index Terms—Damage assessment, disaster, reconstruction, re-
covery, tornado.

I. INTRODUCTION

HAZARD studies have recognized remote-sensing tech-
nology as a powerful tool in damage assessment and

recovery analyses. These methods have been extensively uti-
lized in monitoring land alterations from natural and an-
thropogenic processes [1] with ubiquitous satellite coverage,
regular data collection, and repeatable independent analyses
[2], [3]. Through the manipulation of multispectral data, dam-
aged areas can be detected by correlating alterations in the spec-
tral signatures of ground features with the disaster [2], [4], [5].
Depending on method selection and type of imagery regarding
spatial and spectral resolution, varying levels of damage can
be discerned, thereby serving as a cost-effective alternative
to ground-intensive surveys and aerial photography [2], [3],
[5], [6]. Although finer resolution imagery can detail large-
scale damages and features [2], drawbacks exist with smaller
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coverage, more intensive algorithms, and increasing processing
times [7]. Medium-resolution imagery such as Landsat The-
matic Mapper (TM) and Landsat Enhanced TM (ETM+) could
prove to be more effective in capturing the extent and chaotic
nature of damaged areas than finer resolution imagery with its
top-view assessment and the development of an effective series
of image-processing algorithms.

To analyze disaster impacts and recovery, change detection
methods [8] are commonly employed by utilizing spectral en-
hancements including normalized difference vegetation index
(NDVI), multitemporal differencing, and classification tech-
niques. In a severe storm assessment, Bentley et al. [4] utilized
NDVI differencing derived from Landsat TM imagery to distin-
guish between hail and wind damage signatures based on sig-
nificantly lower values associated with plant destruction from
hail. Wilkinson and Crosby [9] categorized NDVI-differenced
values generated from Landsat TM imagery into light, mod-
erate, and severe damage classes of the April 23–24, 2010
Yazoo, MS, tornado. Yuan et al. [2] demonstrated that NDVI
differencing produced from Indian Remote Sensing Satellite
Linear Imaging Self-Scanning imagery could delineate between
F-scale damages using overlay analysis of F-scale damage data
in the 1999 Moore, OK, tornado. However, they noted issues in
detecting portions of the track along riverbanks due to signature
confusion [2]. Jedlovec et al. [5] also had some problems with
NDVI imagery generated from ASTER and MODIS scenes due
to complications of springtime greenness and exogenous land
changes [2]–[5] in detecting the 2002 La Plata, MD, tornado
path, as well as coarser MODIS imagery.

Other impact studies used different spectral enhancements
and geospatial techniques as a means to capture tornado tracks.
Myint et al. [3] found principal component bands 3 and 4 from
Landsat TM imagery to be most effective in discerning the 1999
Moore, OK, tornado path due to contrasting vegetation and
soil signatures contrary to Yuan et al. [2] findings. They were
able to successfully classify the track using these bands and the
object-oriented approach, whereas supervised and unsupervised
techniques proved to be problematic due to the heterogeneity
nature of the urban environment. More recently, Myint et al. [6]
geospatially categorized F-scale damages within the track using
the same imagery with different statistical approaches and
window sizes. They noted moderate success with the Getis
Index approach and 21 × 21 window size, suggesting better
results with finer resolution imagery.

Regarding tornado damage assessments, land cover types,
damage severity, and image quality should be considered with
spectral enhancement selection. The ability to detect tornado
damage depends on the type of land cover and damage severity
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[2], [3], [5]. Urban areas comprising high-class variability and
complex spatial arrangements often obscure the track as a result
of a similar chaotic pattern [2], [3] with the damage path.
Whereas homogeneous regions such as forested areas are easier
to discern overall, some vegetative covers are more problematic
due to texture, land cover type, and damage magnitude [2],
[3], [5]. Damage detection may also be reduced due to image
quality, depending on atmospheric absorption and scattering of
water vapor and aerosols [2], [5], as well as timing of data
collection and storm event. With the complexities of damage
detection in rural and urban areas, urban indices or a com-
bination of vegetative and urban indices could better evaluate
tornado damage in recovery analyses.

Geospatial techniques have been employed in a variety of
postdisaster analyses from wildfires, hurricanes, or tsunamis
(e.g., Splinter et al. [10], Rodgers et al. [11], Barnes et al. [12],
Reif et al. [13], and Mitri and Gitas [14]), focusing on vege-
tative and urban recovery. Lin et al. [15] and Chou et al. [16]
uncovered spatial disparities in vegetative recovery rates one
and six years after the landslide, respectively, using a recovery
index and NDVI images (produced from SPOT imagery). Mod-
ifying the recovery index, Roemer et al. [17] added an impact
threshold to define the damaged and recovered regions three
years after the 2004 Tsunami using NDVI imagery (derived
from IKONOS scenes). Validated from ground-truth data, their
analysis proved effective in discerning recovery with overall
accuracies of 80.77%. This method could be useful in dis-
tinguishing damaged and recovered regions after the disaster
by taking into account the minor deviations in index values
that can occur annually. Unlike the aforementioned analyses,
Reif et al. [13] employed hyperspectral imagery, decision-
based classification, and LIDAR data, noting volume increases
(decreases) in bare soil and low vegetation (structures and
medium and tall vegetation) three years after Hurricane Katrina.
Focusing solely on urban recovery, Ward et al. [18] found
recovery disparities using a Geographic Information Systems
(GIS)-based spatial recovery index three years after Hurricane
Katrina, loosely connecting recovery and social vulnerability.
Burton et al. [19] also discovered recovery variations from Hur-
ricane Katrina using repeat photography, GIS methodologies,
and spatial statistics correlating the biophysical impact with
recovery.

One aspect, however, that has only recently become re-
searched is postdisaster recovery utilizing remote-sensing
methodologies (e.g., Splinter et al. [10], Rodgers et al. [11],
Barnes et al. [12], Reif et al. [13], and Mitri and Gitas [14]).
While these and other studies have shown that evaluation
of postdisaster recovery is possible, only non-geospatial as-
sessments focusing on migration and economic perspectives
have been utilized in examining recovery rates from tornado
disasters. Cross [20] and Paul [21] found recovery in terms of
migration responses to be a function of the amount of aid re-
ceived and economic opportunities obtained. DeSilva et al. [22]
inferred recovery based on property values rebounding to pre-
tornado prices with the 1999 Moore, OK, tornado using county
assessor’s data. Analyzing a small segment of the track, they
discovered that housing prices in the more severely damaged
areas lagged in market value before rebounding three years

later, illustrating the effect that the biophysical impact has on
recovery rates [19], [22]–[26].

Most disaster research utilizing remote sensing has focused
on small-scale disasters, such as hurricanes, tsunamis, earth-
quakes, and floods. Few studies have examined tornado events,
limiting their scope to damage assessments. Depending on
intercepted infrastructure and damage magnitude, the magni-
tude of damage can actually be greater than large-scale events,
creating lasting effects on the landscape. Therefore, the need
to examine not only the initial impact but also recovery using
geospatial means still exists. Examining recovery objectively
can provide valuable information regarding restoration dispar-
ities from the biophysical impact and lead to better decision-
making policies in the recovery process.

Consequently, this study addresses the following questions:
1) How effective are geospatial techniques in assessing recov-
ery using medium-resolution imagery? 2) Are recovery rates
uniform with regard to damage class (e.g., Fujita scale)? These
questions are investigated by employing remote-sensing and
GIS technologies to examine recovery from the 1999 Moore,
OK, tornado using Landsat TM and Landsat ETM+ imagery.
Utilizing spectrally enhanced imagery, a recovery index, and
statistical thresholds, damaged and recovered regions were
classified and spatially analyzed with F-scale contour data
produced from ground surveys [2], [27]. In this analysis, we
define recovery as the restoration of the landscape in both rural
and urban regions, i.e., returning back to the original state as
measured by predisaster indexed values. Annual and F-scale
recovery rates were computed to investigate the role that the
biophysical impact plays in recovery. Decision makers could
use this information to implement more resilient strategies in
the most severely damaged areas.

II. STUDY AREA AND DATA DESCRIPTION

A. Study Area

This study examines the recovery from the 1999 Moore, OK,
tornado spawned from the May 3, 1999, supercell outbreak.
This tornado is considered as one of the deadliest tornado
disasters, having the strongest measurable winds ever recorded
[28]. Labeled A9 in Fig. 1, this tornado touched down at the
central portion of Grady County and traveled 38 mi before
dissipating on the eastern side of Oklahoma City in Oklahoma
County. Within its path, the cities of Moore and Bridge Creek
sustained the most damage based on dense infrastructure and
inferred intensity rating of an F5 on the Fujita Scale [27].
Following National Oceanic and Atmospheric Administration’s
publication “Storm Data” [29], our research only examines
the continuous track labeled A9. Additionally, the damage
assessment of the Moore tornado was concluded prior to the
introduction of the Enhanced Fujita Scale [30].

This particular tornado serves as a good example for ana-
lyzing the recovery process because of its track length, path,
varying degrees of damages, and detailed damage informa-
tion. This tornado tracked 38 mi on the ground, traversing
different land cover types in both rural and urban areas.
Consequently, damage magnitudes varied significantly with
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Fig. 1. Map of the recorded tornado locations and associated F-scale ratings during the May 3, 1999, Tornado Outbreak in Central Oklahoma.
http://www.srh.noaa.gov/images/oun/wxevents/19990503/maps/bigoutbreak.gif.

Fujita Scale ratings, ranging from minor damages correlated
with an F1 to incredible damages associated with an F5 [31].
Additionally, this tornado was the only track that could be
clearly identified in satellite imagery with highly detailed
F-scale information provided by the most knowledgeable ex-
perts [27]. With such a diverse cross-section of factors involved,
this tornado disaster provides an opportune case study to moni-
tor recovery.

B. Data and Data Preprocessing

For this multitemporal study, both Landsat TM and Landsat
ETM+ imagery at 30-m spatial resolution were utilized, with
seven multispectral channels spanning from blue to thermal
portions of the electromagnetic spectrum. All of the multispec-
tral bands were utilized, except for the thermal and panchro-
matic bands due to coarse resolution and Landsat ETM+
availability, respectively. Cloud-free imagery for Central
Oklahoma (path 28, row 35) were obtained prior to the tornado
disaster on June 26, 1998, and after the disaster on May 12,
1999, May 30, 2000, April 23, 2001, and September 17, 2002.
Ideally, imagery should be collected within two weeks of the
anniversary date [8], [32]; for each scene, however, cloud
contamination proved to be problematic. Therefore, scenes
for 1998 and 2002 were selected based on similar vegetative
greenness [33] to ensure successful change detection. Images
after 2002 were not collected due to the lack of cloud-free
scenes prior to another tornado event within the study area on
May 8, 2003.

The selected scenes were preprocessed to reliably moni-
tor recovery [34]. Relative radiometric corrections were per-

formed to minimize distortion of actual surface reflectance
from haze [33], [35] and convert digital numbers into apparent
reflectance using the Cos(t) model in IDRISI Taiga (Version
16). These images were imported into ERDAS Imagine 9.3
and coregistered to reduce pixel misregistration [6] below the
standard root-mean-square error of 0.5 pixels. To minimize
reflectance variations between scenes [32], [33], [36], post-
tornado imagery was normalized based on densely vegetative
values in the pre-tornado image. Each image was layer stacked
and subset to extract the tornado-affected region covering
1689.62 km2 (upper left longitude 97◦ 44′ 36.537′′ W
and latitude 35◦ 35′ 32.057′′ N and lower right longitude
97◦ 19′ 4.331′′ W and latitude 35◦ 12′ 0.343′′ N).

In conjunction with Landsat imagery, F-scale contours [2],
[27] developed from the Oklahoma Weather Center were uti-
lized to define the damage track (see Fig. 2). Using a high-
resolution F-scale map provided by Speheger et al. [27],
F-scale contours were digitized and georeferenced in Universal
Transverse Mercator Projection Zone 14 with World Geode-
tic System 1984 spheroid using the U.S. Geological Survey
Quadrangles, i.e., Oklahoma City North and Oklahoma City
South, at a scale of 1:100 000. The track was clipped to the
post-tornado image to exclude a small portion extending into
the adjacent scene below. This decision to omit less than
10 mi of the track in a densely vegetative region was based
on the requirement of different radiometric corrections tailored
to each scene. This would have more than likely complicated
results by introducing errors; therefore, this scene and segment
of track was not included in the analysis. The F-scale contour
data were transformed into an area-of-interest file (AOI) to
extract recovery information for all F-scale zones.
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Fig. 2. Superimposed F-scale contour data, with the outermost contour F1
rating increasing in damage scale intensity to the innermost F5 rating contour
overlaid on the zoomed-in section of the study area displayed in grayscale.

III. METHODS

A. Spectral Indices

To evaluate recovery, spectral enhancements were generated
in the form of vegetative, urban, and a combination of these two
indices. NDVI and soil-adjusted vegetation index (SAVI) were
used to assess vegetative health [17], [37], [38] and distinguish
between damaged and reconstructed areas based on known
index values (see Table I). Urban index (UI) images [39] were
also produced to better discern recovery in residential areas
and other built environments due to its wider range between
vegetative and man-made surfaces [40] (see Table I). By under-
standing the range of values associated with vegetative health
and land cover types, land cover changes associated with the
tornado could be monitored through changing index values [2],
[3]. Therefore, NDVI, SAVI, and UI images were generated for
1998, 1999, 2000, 2001, and 2002.

For this study, we created two new indices to better evaluate
recovery. The first index merged UI and NDVI into what we
call the Coupled Vegetative Urban Index (CVUI). The aim of
this index is to successfully capture damaged regions in both
vegetative and urban land covers based on their sensitivity to the
spectral responses of these materials (see Table I). The second
new index, which is named ShortWave Infrared Index (SWIRI),
also contains a vegetative assessment component using the
near-infrared band and first midinfrared band (see Table I). The
inclusion of the first midinfrared band in this index could help
indicate the state of surface features (damaged and recovered),
as this band is commonly used to delineate moisture content
in vegetation and soils [41]. As a result, both SWIRI and
CVUI could prove to be more effective than the aforementioned
indices. Hence, SWIRI and CVUI outputs were produced for

1998, 1999, 2000, 2001, and 2002 with an example of the 1999
SWIRI image shown in Fig. 3.

Using the indexed images (NDVI, SAVI, UI, SWIRI, and
CVUI), recovery was evaluated for the years of 2000, 2001, and
2002, utilizing a recovery equation. This equation was modified
from Roemer et al. [17]

R =

[
Index2 − Index1 + 2

Index1 − Index0 + 2

]
(1)

where R is recovery; and Index2, Index1, and Index0 are
the images for the recovery year, post-tornado year, and pre-
tornado year, respectively (see Fig. 4). The differenced images
were rescaled using a factor of two to overcome a computer
algorithm problem of near-zero values in the denominator. This
also ensured the inclusion of minor to moderately damaged
areas that could have otherwise been excluded with a threshold.
The resulting images were then divided accordingly for each
index and year assessed.

B. Recovery Analysis

Recovery was determined by employing different statistical
thresholds from the aforementioned images to account for mi-
nor annual deviations. While recovered regions should obtain a
value of 1.0, annual differences due to atmospheric and climate
conditions could still potentially affect index values despite data
corrections. Therefore, three possible outcomes were generated
based on common thresholds of 0.5, 1.0, and 1.5 standard
deviations from the mean of the entire recovery scene listed in
Table II. Values that fell within the selected standard deviation
were classified as recovered, whereas out-of-bound pixels were
regarded as still damaged. To capture only recovered pixels in
the subsequent year(s), a mask was applied to 2001 and 2002 re-
covery images, following the aforementioned procedures. This
process was repeated for each index (NDVI, SAVI, UI, SWIRI,
and CVUI), yielding a total 45 possible recovery outcomes.
To extract recovery information only for the tornado-affected
region, we used track AOI to subset these images.

To compare recovery outcomes, accuracy assessments were
performed and analyzed for each scene. As suggested by
Congalton [42], the minimum 50 points per class (recovered
and still damaged) were collected using a stratified random
sampling approach [42], [43], generating a total of 100 points
per scene. These results generated error matrices listing overall,
producer’s, and user’s accuracies, which express the values of
categorized points relative to the verified ground truth category
[42], [43]. This is a very effective way of representing accuracy
in that both errors of inclusion and omission are presented
[42]. More specifically, producer’s accuracy is the probability
of a pixel being correctly identified, and user’s accuracy is the
total number of correct pixels in a category divided by the
total number of classified pixels for that category [42]. These
accuracies were averaged according to index and threshold and
ranked to determine the best results. Error uncertainty with the
recovery index was assessed using the best results to calculate a
combined standard error from a random sampling of 100 points
per recovery scene collected outside the tornado track.
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TABLE I
LIST OF INDEX, EQUATION, AND UTILITY

Fig. 3. Post-tornado SWIRI image of the Moore, OK, tornado-impacted
region with tornado path outlined in white.

Using the best results, annual recovery rates were calculated
from the following equation:

Recovery =

[
Recovery area

Total Area

]
∗ 100. (2)

To illustrate annual recovery changes, a composite map display-
ing damaged and recovered regions was produced. F-scale re-
covery rates were calculated using the aforementioned equation
by overlaying F-scale contour data onto each annual map.

IV. RESULTS

Before quantitatively evaluating recovery, we analyzed the
behavior of the two new indices SWIRI and CVUI. Sampled
index values of various land cover types listed in Table III
reveal that both SWIRI and CVUI exhibit similar values to UI,
producing low positive values for bare soil and low negative
values for healthy vegetation. Both SWIRI and CVUI show
positive (negative) correlations with UI (SAVI and NDVI)
curves but deviate slightly with CVUI values falling in between
lower UI values and higher SWIRI values.

Accuracy assessments of the aforementioned indices and
thresholds revealed trends according to threshold and index
type. The 0.5 standard deviation threshold performed poorly
among all the indices, with the least effective results of 65.0%
produced by SAVI based on the averaged results in Table IV.
Both vegetation indices underperformed with their best accu-
racies of 75.7% and 76.3%, which are still short of the 80%
land use classification [45]. UI consistently outperformed the
vegetative indices with the 1.0 standard deviation accurately
classifying 80% of the damaged and recovered regions, fol-
lowed by 79.7% with the 1.5 standard deviation threshold. The
new indices SWIRI and CVUI proved to be most effective at
capturing recovery with overall accuracies of 80.3% and 81.7%
for 1.0 and 1.5 standard deviation thresholds, respectively.

Upon further inspection, damaged areas proved to be more
difficult to classify with lower producer’s and user’s accuracies.
Although producer’s accuracies remained at 80.0% or above,
these accuracies were, on average, 19.0% lower than recovered
pixels, indicating more problems excluding recovered pixels
from the damaged class. The user’s accuracies deviated more
than the producer’s, with accuracies ranging from 41.3% with
SAVI using the 0.5 standard deviation threshold to 73.3% with
SWIRI using 1.5 standard deviation threshold. This illustrated
more difficulty in correctly identifying still damaged areas
largely in part from exogenous land use changes such as agri-
cultural practices and newly built environments. While some
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Fig. 4. SWIRI recovery images of the Moore, OK, tornado-impacted region with tornado path outlined in white for (a) 2000, (b) 2001, and (c) 2002.

TABLE II
LIST OF RECOVERED RANGES CORRESPONDING TO 0.5, 1.0, AND 1.5

STANDARD DEVIATION THRESHOLDS FOR EACH INDEX AND YEAR

of these regions were still visible as distinct linear shapes in
McClain County (see Fig. 5), this problem was best handled
using SWIRI, with the largest threshold followed by CVUI.
Error analysis using the best results validated the effectiveness
of the recovery index with a combined standard error of 0.049
for the SWIRI recovery scenes.

Using the best results (SWIRI at 1.5 standard deviation),
derived F-scale recovery rates (Table V) revealed two signif-
icant findings in this analysis. The first major finding is the
consistent theme that the incredibly damaged regions were the
slowest to recover, whereas minor to moderately damaged areas
reported the highest recovery rates. More specifically, recovery
in F5 damage zones consistently lagged behind F0/F1 zones
by a noticeable difference of 18.9%, 17.2%, and 18.7% in
2000, 2001, and 2002, respectively. This trend shown in Fig. 6
was also evident in F4 damaged zones as the most substantial
impacted areas (F4–F5) only recovered by an average of 66.6%
during the first year, compared with 79.3% recovery in the

F0/F1–F3 regions. Even by the third year after the tornado event
(2002), recovery for the F4–F5 zone was only 84.0%, whereas
F0/F1–F3 damages had recovered to 95.7%. This observation
led to the second important finding that complete recovery was
never attained in any F-scale damage zones.

Annual differences and trends in recovery rates became
more apparent when plotting F-scale recovery rate information
(Fig. 6). Most recovery occurred within the first two years
after the event with relatively minor changes between 2001 and
2002. The 2000–2001 rates displayed a 12.0%–16.2% increase
in recovery, whereas the 2001–2002 recovery rates increased
from 1.1% to 4.2%. The F5 recovery rate nearly stabilized with
only a 1.1% increase in 2002 with a total of 75.3% recovered.
Interestingly, recovery lines were not parallel across all damage
levels, indicating differences in the degree of recovery as a
function of F-scale damage. However, some similarities could
be seen between F0/F1–F3 recovery rates with nearly identical
slopes and a relatively narrow range in the three years assessed.

V. DISCUSSION

As previously detailed, we analyzed recovery rates for
three years following the 1999 Moore, OK, tornado utilizing
medium-resolution imagery and found three important findings.
The first finding was that medium-resolution satellite imagery
such as Landsat TM and ETM+ can be used to establish re-
covery rates by providing a top-view assessment. The two new
indices SWIRI and CVUI developed for disaster management
and recovery proved to be best suited for recovery assessments
over UI, NDVI, and SAVI as a result of band combinations. In
addition to index types, recovery was most effectively captured
using the 1.5 standard deviation threshold, with the best overall
results noted with SWIRI. The larger range of recovery values
was more reflective of actual recovery similar to previous stud-
ies [15], [17], which employed thresholds to analyze recovery.

Regardless of threshold selection, damaged pixels proved
to be the most difficult to accurately classify due to land
use changes. In particular, agricultural changes (fallow versus
active fields) were repeatedly misidentified as damaged when
performing classification accuracy assessments. Additionally,
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TABLE III
SAMPLED MEANS OF DIFFERENT LAND COVER CLASSES

TABLE IV
AVERAGED ACCURACY ASSESSMENTS LISTED BY INDEX AND STANDARD DEVIATION THRESHOLD. (Overall = Overall accuracy,

Prod. = Producer’s accuracy,User’s = User’s Accuracy,R = Rank, PR = Producer’s Rank,UR = User’s Rank)

Fig. 5. Recovered and damaged regions for 2000, 2001, and 2002 using SWIRI and 1.5 standard deviation threshold. (a) Track overview. (b) Inset.
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TABLE V
RECOVERY RATES FOR F-SCALE ZONES USING SWIR INDEX

WITH 1.5 STANDARD DEVIATION THRESHOLD

new construction was more likely to be misclassified as dam-
aged, especially if this transformation occurred in previously
healthy vegetation areas. Such a change occurred with the
construction of the H.E. Bailey Turnpike Norma Spur (OK 4)
in the lower left quadrant of all 2000 recovery images (Fig. 5).
This land use change was repeatedly misidentified as damaged
among all the thresholds during the classification accuracy
assessments and may have also affected the surrounding veg-
etation. Consequently, these exogenous changes did affect the
overall accuracy of the recovery index but were rather minimal
in comparison to the amount of recovery that was accurately
identified.

The second and most critical finding is that the incredibly
damaged areas associated with an F5 rating were the slowest
to rebuild, whereas the lesser-damaged regions with F0/F1
ratings reported the highest recovery rates. These results were
consistent throughout 2000, 2001, and 2002 as recovery in F5
damaged areas lagged behind F0/F1 damaged zones by a con-
siderable difference of 18.9%, 17.2%, and 18.7%, respectively.
Lower recovery rates for F4 damaged areas also illustrated
the profound effect that the biophysical impact has on recov-
ery. This finding is conclusive with other hazard studies [19],
[22]–[26] that have also linked recovery rates to the biophysical
impact.

Higher recovery in the F0/F1–F3 damaged areas could be ex-
plained by contrasting differences between these regions and F4
and F5 zones. Maximum damage indicators for F0/F1–F3 rat-
ings are noted by missing roofs and, in some cases, removal of
walls, whereas well-constructed houses are completely leveled
in F4 zones with even more catastrophic damage in F5 regions
[31]. As a result, recovery in lesser damaged areas (F0/F1–F3)
would typically require less financial resources to draw upon
and time to complete the repairs, thereby explaining similar and
faster recovery rates [19], [46]. Unlike lesser damaged areas,

Fig. 6. Graph for the 1999 Moore, OK, tornado-impacted region displaying
F-scale recovery rates in percent for 2000, 2001, and 2002 as established by the
recovery index.

recovery in the most severely damaged areas (F4 and F5) would
require more financial resources, decision-making policies re-
garding construction, and, consequently, more time to rebuild
with the possibility of relocating to another site [19], [26], [46].

In addition to anthropogenic recovery, vegetation regener-
ation is a function of the damage magnitude and plant size
[47]–[49]. Generally, minor-wind damages to vegetation will
reorient or blow over the plant, resulting in only minor dis-
ruptions in photosynthetic activity [4]. Therefore, much of
the vegetation survives and recovers quickly back to the pre-
tornado state [4]. Contrary to this, intense winds are more likely
to snap vegetation destroying it; thus, recovery is much slower
[47], [48]. Additionally, the speed of vegetation regeneration
depends on plant size before the disaster, as smaller plants tend
to recover quicker than large trees [13], [47]–[49]. Typically,
larger vegetation will take several years, if not decades, for
complete restoration based on tree size [47]. This aspect ex-
plains not only vegetative response with recovery rates but also
the location of still damaged areas in the bottom portion of the
track (see Fig. 5) due to the densely forested region.

The third important finding was that, even by 2002 (three
years after the tornado event), complete recovery was never
achieved in any F-scale damaged zones. By 2002, the least
damaged regions (F0/F1) had rebuilt to 96.9%, whereas re-
covery in the most incredibly damaged areas (F5) had reached
only 78.2%. This could be partially attributed to a relatively,
short time frame, given that a subsequent F4 tornado hit the
same study area on May 8, 2003. As a result, any continued
recovery from the May 3, 1999, tornado disaster could not be
analyzed. Additionally, decision-making policies and political
institutions could have also affected recovery in urban areas,
with different land use changes set aside to mitigate future
events or help improve current economic status. For example,
after the 2007 Greensburg, Kansas, tornado, city officials de-
cided to rebuild the town using green initiatives and rezoned
a few residential areas into commercial in hopes of attracting
economic opportunities [50]. Individual decisions to relocate
could have also impacted recovery based on damage severity,
financial resources including disaster relief, and psychological
decisions as seen with Hurricanes Katrina and Rita [51]. With
regards to vegetation regeneration, large vegetation will take
several years, if not decades, to return to pre-tornado conditions,
thus contributing to incomplete recovery [47].
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In addition to the biophysical aspect of disaster, preexisting
conditions could also affect recovery in terms of social vulner-
abilities and place-based vulnerabilities. Social vulnerabilities
due to lower socioeconomic status, lack of resources, and poor
housing quality can magnify the impact of the disaster and
consequently affect the ability to fully recover [52]–[56]. Such
examples of this can be seen in the more recent cases of
the 2004 Tsunami, Hurricane Katrina, and the 2010 Haitian
Earthquake [56], [57]. These factors could have contributed to
the incomplete recovery after the tornado disaster but were not
analyzed in this analysis.

Certain geographic locations may also be physically and
socially susceptible to a given hazard, creating place-based vul-
nerabilities [55], [58]. These regions can have higher degrees of
vulnerability based on the clustering of social and biophysical
characteristics within the hazard zone [58]. The city of Moore,
OK, was previously struck by an F2 tornado in October 1998,
but that tornado produced considerably smaller damages with a
path length of only 2 mi. Nonetheless, this could have affected
individual and commercial decisions in terms of rebuilding
or relocating. One known example occurred in a residential
section of Moore, OK, as decision makers chose not to rebuild
in this section due to the past occurrence of tornadoes in this
area and instead dedicated the land as a city park. Other place-
based vulnerabilities, similar to those previously mentioned,
could have also existed within the track and affected individual
and policy-making decisions on recovery, given the short time
between disasters.

VI. CONCLUSION

With regards to remote-sensing capabilities, this research sets
forth the direction of recovery analysis for tornado disasters
using cost-effective resolution imagery such as Landsat TM and
ETM+, in conjunction with geospatial techniques. This type of
analysis provides a top-view assessment that could aid decision-
making processes in urban planning and developers in the
recovery process. Within this research, the two indices SWIRI
and CVUI that were developed for disaster management and
recovery analysis should also be explored with the traditionally
employed indices (NDVI, SAVI, and UI) to better capture both
the initial impact and the recovery process.

With regard to tornado disaster recovery, we have identified
that the incredibly damaged areas associated with an F5 rating
were the slowest to rebuild, whereas the lesser damaged regions
with F0/F1 ratings reported the highest recovery rates. Even
by 2002, three years after the 1999 Moore, OK, tornado,
complete recovery was never achieved in any F-scale damaged
zones. Such findings stress the importance that the scope and
magnitude of the disaster has on the recovery process. Decision
makers and other policyholders could better understand the
importance of the biophysical impact and implement more
resilient approaches to recovery within the most severely dam-
aged areas.

ACKNOWLEDGMENT

The authors would like to thank R. Smith of the National
Weather Service, Norman, OK, for his assistance in F-scale

contour data; B. Trapido-Lurie for cartographic assistance; and
E. A. Wentz and A. J. Brazel for their comments.

REFERENCES

[1] M. D. Mura, J. A. Benediktsson, F. Bovolo, and L. Bruzzone, “An un-
supervised technique based on morphological filters for change detection
in very high resolution images,” IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 3, pp. 433–437, Jul. 2008.

[2] M. Yuan, M. Dickens-Micozzi, and M. A. Magsig, “Analysis of tornado
damage tracks from the 3 May tornado outbreak using multispectral satel-
lite imagery,” Weather Forecast., vol. 17, no. 3, pp. 382–398, 2002.

[3] S. Myint, M. Yuan, R. Cerveny, and C. Giri, “Comparison of remote
sensing image processing techniques to identify tornado damage areas
from Landsat TM data,” Sensors, vol. 8, no. 2, pp. 1128–1156, Feb. 2008.

[4] M. L. Bentley, T. L. Mote, and P. Thebepanya, “Using Landsat to identify
thunderstorm damage in agricultural regions,” Bull. Amer. Meteorol. Soc.,
vol. 83, no. 3, pp. 363–376, Mar. 2002.

[5] G. J. Jedlovec, U. Nair, and S. L. Haines, “Detection of storm damage
tracks with EOS data,” Weather Forecast., vol. 21, no. 3, pp. 249–267,
Jun. 2006.

[6] S. Myint, M. Yuan, R. Cerveny, and C. Giri, “Comparison of remote
sensing image processing techniques to identify tornado damage areas
from Landsat TM data,” Sensors, vol. 8, pp. 1128–1156, 2008.

[7] E. A. Wentz, W. L. Stefanov, M. Netzband, M. Moller, and
A. J. Brazel, Global Mapping of Human Settlements: Experiences, Data-
sets, and Prospects. Boca Raton, FL: CRC Press, 2009, pp. 191–204.

[8] A. Singh, “Digital change detection techniques using remotely sensed
data,” Int. J. Remote Sens., vol. 10, pp. 989–1003, 1989.

[9] D. W. Wilkinson and M. K. Crosby, “Rapid assessment of forest damage
from tornadoes in Mississippi,” Photogramm. Eng. Remote Sens., vol. 76,
no. 12, pp. 1298–1301, 2010.

[10] K. D. Splinter, D. R. Strauss, and R. B. Thomlinson, “Assessment of post-
storm recovery of beaches using video imaging techniques: A case study
at Gold Coast Australia,” IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 12, pp. 4704–4716, Dec. 2011.

[11] J. C. Rodgers, III, A. W. Murrah, and W. H. Cooke, “The impact of
Hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve,
Alabama from NDVI data,” Estuaries Coasts, vol. 32, no. 3, pp. 496–507,
2009.

[12] C. F. Barnes, H. Fritz, and J. Yoo, “Hurricane disaster assessments with
image-driven data mining in high resolution satellite imagery,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1631–1640, Jun. 2007.

[13] M. K. Reif, C. L. Macon, and J. M. Wozencraft, “Post-Katrina Land-
cover, elevation and volume change assessment along the south shore of
Lake Pontchartrain, Louisiana, U.S.A,” J. Coastal Res., no. 62, pp. 30–39,
Spring 2011.

[14] G. H. Mitri and I. Z. Gitas, “Mapping post-fire vegetation recovery using
EO-1 Hyperion imagery,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 3, pp. 1613–1618, Mar. 2010.

[15] C. Y. Lin, H. M. Lo, W. C. Chou, and W. T. Lin, “Vegetation recovery
assessment at the Jou-Jou Mountain landslide area caused by the 921
earthquake in central Taiwan,” Ecol. Model., vol. 176, no. 1/2, pp. 75–
81, Aug. 2004.

[16] W. C. Chou, W. T. Lin, and C. Lin, “Vegetation recovery patterns as-
sessment of landslides caused by catastrophic earthquake: A case study
in Central Taiwan,” Environ. Monitoring Assessment, vol. 152, no. 1–4,
pp. 245–257, May 2009.

[17] H. Römer, J. Jeewarongkakull, G. Kaiser, R. Ludwig, and H. Sterr,
“Monitoring post-tsunami vegetation recovery in Phang-Nga province,
Thailand—A remote sensing based approach,” Int. J. Remote Sens.,
vol. 33, no. 10, pp. 3090–3121, 2012.

[18] S. M. Ward, M. Leitner, and J. Pine, “Investigating recovery patterns in
post disaster urban settings: Utilizing geospatial technology to understand
post-Katrina recovery in New Orleans, Louisiana,” Geospatial Tech. Ur-
ban Hazard Disaster Anal., vol. 2, pp. 355–372, 2010.

[19] C. Burton, J. T. Mitchell, and S. L. Cutter, “Evaluating post-Katrina re-
covery in Mississippi using repeat photography,” Disasters, vol. 35, no. 3,
pp. 488–509, Jul. 2011.

[20] J. Cross, “Megacities and small towns: Different perspectives on
hazard vulnerability,” Environ. Hazards, vol. 3, no. 2, pp. 63–80,
Jun. 2001.

[21] B. Paul, “Evidence against disaster-induced migration: The 2004 tornado
in north-central Bangladesh,” Disasters, vol. 29, no. 4, pp. 370–385,
Dec. 2005.



4322 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 11, NOVEMBER 2012

[22] D. G. De Silva, J. B. Kruse, and Y. Wang, “Catastrophe-induced destruc-
tion and reconstruction,” Nat. Hazards Rev., vol. 7, no. 1, pp. 19–25,
Feb. 2006.

[23] D. Dacy and H. Kunreuther, The Economics of Natural Disasters: Impli-
cation for Federal Policy. New York: Free Press, 1969.

[24] P. Hass, K. Eugene, and W. Robert, Reconstruction Following Disaster,
M. J. Bowden, Ed. Cambridge, MA: MIT Press, 1977.

[25] E. Yasui, “Community vulnerability and capacity in post-disaster recov-
ery: The cases of Mano and Mikura neighborhoods in the wake of the 1995
Kobe earthquake,” Ph.D. dissertation, Dept. Geography, Univ. British
Columbia, Vancouver, BC, Canada, 2007.

[26] D. P. Aldridge, “The power of people: Social capital’s role in recovery from
the Kobe earthquake,” Nat. Hazards, vol. 56, no. 3, pp. 595–611, 2010.

[27] D. A. Speheger, C. A. Doswell, III, and G. J. Stumpf, “The tornadoes of
3 May 1999: Event verification in Central Oklahoma and related issues,”
Weather Forecast., vol. 17, no. 3, pp. 362–381, Jun. 2002.

[28] R. S. Cerveny, J. Lawrimore, R. Edwards, and C. Landsea, “Extreme
weather records: Compilation, adjudication and publication,” Bull. Amer.
Meteorol. Soc., vol. 88, no. 6, pp. 853–860, Jun. 2007.

[29] National Climate Data Center, 2010. [Online]. Available: http://www4.
ncdc.noaa.gov/cgiwin/wwcgi.dll?wwEvent~Storms

[30] J. R. McDonald, “Development of an enhanced Fujita scale for estimating
tornado intensity,” in Proc. 21st Conf. Severe Local Storms, Amer. Meteo-
rol. Soc., Boston, MA, 2002, pp. 174–177.

[31] T. T. Fujita, “Experimental classification of tornadoes in FPP scale,” Univ.
Chicago, Chicago, IL, SMRP Res. Rep. 98, 1971.

[32] J. R. Jensen, K. Rutchey, M. S. Koch, and S. Narumalani, “Wetland
change detection in the everglades water conservation area 2A using
a time series of normalized remotely sensed data,” Photogramm. Eng.
Remote Sens., vol. 61, no. 2, pp. 199–209, 1995.

[33] A. S. Mahiny and B. Turner, “A comparison of four common atmospheric
correction methods,” Photogramm. Eng. Remote Sens., vol. 73, no. 4,
pp. 361–368, Apr. 2007.

[34] J. R. G. Townshend, C. O. Justice, C. Gurney, and J. McManus, “The
impact of pixel misregistration on change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 30, no. 5, pp. 1054–1060, Sep. 1992.

[35] P. S. Chavez, “An improved dark-object subtraction technique for atmo-
spheric scattering correction of multispectral data,” Remote Sens. Envi-
ron., vol. 24, no. 3, pp. 459–479, Apr. 1988.

[36] F. G. Hall, D. E. Strebel, J. E. Nickeson, and S. J. Goetz, “Radiometric
rectification: Towards a common radiometric response among multidate,
multisensor images,” Remote Sens. Environ., vol. 35, no. 1, pp. 11–27,
Jan. 1991.

[37] J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, “Monitor-
ing vegetation systems in the Great Plains with ERTS,” in Proc. 3rd
Earth Resour. Technol. Satellite-1 Symp. Tech. Presentations, Section A1,
S. C. Freden, E. P. Mercanti, and M. Becker, Eds., 1973, pp. 309–317.

[38] A. R. Huete, “A soil-adjusted vegetation index (SAVI),” Remote Sens.
Environ., vol. 25, no. 3, pp. 295–309, Aug. 1988.

[39] M. Kawamura, S. Jayamamana, and Y. Tsujiko, Comparison of ur-
banization and environmental condition in Asian cities using satel-
lite remote sensing data1997. [Online]. Available: http://www.a-a-r-
s.org/acrs/proceeding/ACRS1997/Papers/PS197-8.htm

[40] P. Villa, “Imperviousness indexes performance evaluation for mapping
urban areas using remote sensing data,” in Proc. Joint Urban Remote Sens.
Event, Paris, France, 2007, pp. 1–6.

[41] F. F. Sabins, Remote Sensing—Principles and Interpretation, 3rd ed.
New York: W.H. Freeman, 1997, p. 494.

[42] R. G. Congalton, “A review of assessing the accuracy of classifications of
remotely sensed data,” Remote Sens. Environ., vol. 37, no. 1, pp. 35–46,
Jul. 1991.

[43] S. W. Myint, C. P. Giri, L. Wang, Z. Zhu, and S. Gillette, “Identifying
mangrove species and their surrounding land use and land cover classes
using an object oriented approach with a lacunarity spatial measure,”
GIScience Remote Sens., vol. 45, no. 2, pp. 188–208, 2008.

[44] R. G. Congalton and K. Green, Assessing the Accuracy of Remotely
Sensed Data: Principles and Practice. Boca Raton, FL: Lewis Publ.,
1999, p. 137.

[45] R. M. Hord and W. Brooner, “Land-use map accuracy criteria,” Pho-
togramm. Eng. Remote Sens., vol. 42, no. 5, pp. 671–677, May 1976.

[46] J. R. Stevenson, C. T. Emrich, J. T. Mitchell, and S. L. Cutter, “Using
building permits to monitor disaster recovery: A spatio-temporal case
study of coastal Mississippi following Hurricane Katrina,” Cartograph.
Geograph. Inf. Sci., vol. 37, no. 1, pp. 57–68, Jan. 2010.

[47] C. J. Peterson and A. Rebertus, “Tornado damage and initial recovery in
three adjacent, lowland temperate forests in Missouri,” J. Vegetation Sci.,
vol. 8, no. 4, pp. 559–564, Sep. 1997.

[48] C. J. Peterson, “Damage and recovery of tree species after two different
tornadoes in the same old growth forest: A comparison of infrequent
wind disturbances,” Forest Ecol. Manage., vol. 135, no. 1–3, pp. 237–252,
Sep. 2000.

[49] R. W. Myster and M. P. Malahy, “Tornado effects on damage resprouting
and spatial heterogeneity on the Cross Timbers ecotone of Oklahoma,” J.
Plant Ecol., vol. 3, no. 3, pp. 157–163, 2010.

[50] B. K. Paul and D. Che, “Opportunities and challenges in rebuilding
tornado-impacted Greensburg, Kansas as stronger, better, and greener,”
Geojournal, vol. 76, no. 1, pp. 93–108, Feb. 2011.

[51] C. K. Myers, T. Slack, and J. Singlemann, “Social vulnerability and
migration in the wake of disaster: The case of Hurricanes Katrina and
Rita,” Population Environ., vol. 29, no. 6, pp. 271–291, Jul. 2008.

[52] D. Liverman, “Drought impacts in Mexico: Climate, agriculture, technol-
ogy, and land tenure in Sonora and Puebla,” Ann. Assoc. Amer. Geograph.,
vol. 80, no. 1, pp. 49–72, Mar. 1990.

[53] P. Blaikie, T. Cannon, I. Davis, and B. Wisner, At Risk: Natural Hazards,
People’s Vulnerability, and Disasters. London, U.K.: Routledge, 1994.

[54] S. L. Cutter, “Vulnerability to environmental hazards,” Progr. Human
Geography, vol. 20, no. 4, pp. 529–539, Dec. 1996.

[55] S. Cutter, B. Boruff, and W. L. Shirley, “Social vulnerability to environ-
mental hazards,” Social Sci. Quart., vol. 84, no. 2, pp. 242–261, Jun. 2003.

[56] M. Kaplan, F. G. Renaud, and G. Lüchters, “Vulnerability assessment
and protective effects of coastal vegetation during the 2004 Tsunami in
Sri Lanka,” Nat. Hazards Earth Syst. Sci., vol. 9, no. 4, pp. 1479–1494,
Aug. 2009.

[57] S. L. Cutter, C. T. Emrich, J. T. Mitchell, B. Boruff, M. Gall,
M. Schmidtlein, C. Burton, and G. Melton, “The long road home: Race,
class, and recovery from Hurricane Katrina,” Environ. Sci. Policy Sustain.
Develop., vol. 48, no. 2, pp. 8–20, Mar. 2006.

[58] S. L. Cutter, American Hazardscapes: The Regionalization of Hazards
and Disasters. Washington, DC: Joseph Henry Press, 2000.

Melissa A. Wagner was born in Inglewood, CA. She
received the B.S. degree in geography from Wright
State University, Dayton, OH, in 1999 and the M.A.
degree in geography, in 2011, from Arizona State
University, Tempe, where she currently working to-
ward the Ph.D. degree in tornado disaster recoveries
and damage assessments.

Soe W. Myint received the B.Sc. degree from
Rangoon University, Yangon, Myanmar, the Post-
graduate Diploma from the International Institute for
Aerospace Survey and Earth Sciences, Enschede, the
Netherlands, the M.Sc. degree from the Asian Insti-
tute of Technology, Pathum Thani, Thailand, and the
Ph.D. degree from Louisiana State University, Baton
Rouge.

He is Associate Professor of geographical sciences
with Arizona State University, Tempe.

Dr. Myint has served as the President, the Vice
President, the Regional Director, and the Membership Chair of the American
Society for Photogrammetry and Remote Sensing-Southwest U.S. Region and
is currently serving as the Chair of the Remote Sensing Specialty Group,
Association of American Geographers.

Randall S. Cerveny received the B.S., M.A., and
Ph.D. degrees from the University of Nebraska,
Lincoln.

He is currently a President’s Professor of Geo-
graphical Sciences with Arizona State University,
Tempe, concentrating on climate change and climate
extremes.


